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Preface

Analysing and designing systems with the help of suitable mathemaiical tools is
extraordinarily important for engineers. Accordingly, systems theory is a part of
the core currientum of modern electrical engineering and serves as the foundation
of a large munber of subdisciplines. Indeed. access to specialised arens of electrical
engineering demands a mastery of systems theory.

An introduction to systems theoryv logically beging with the simplest abstrac-
tion: linear, time-invariant systems. We find applications of such systems ev-
erywhere, and their theory has attained advenced maturity and elegance. For
students who are confronted with the theory of linear, time-invariant systems for
the first time. the subjoct unfortunately can prove difficult, and, if the required
and deserved academic progress does not materialise, the subject might be down-
right unpopular. This could be due to the abstract nature of the subject area
coupled with the deductive and nnclear presentation in some lectures. However,
since failure to learn the fundamentals of systems theory would have catastrophic
repercussions for many subsequent subjects, the student must persevere.

Wo have written this book as an easily accessible introduction to systems theory
[or stidents of electrical engineering. The content itself is nothing new; the theory
has already been described in other books., What is new is how we deliver the
material. By means of small, clear explanatory steps, we aim to present Lhe
abstract concepts and interconnections of systems theory so simply as to make
learning easy and fun. Naturally, only the veader can assess whether we have
achieved our goal,

To ald understanding, we generally wse an inductive approach, starting with an
example and then generalising from it. Additional exampies then illnstrate further
aspects of an idea. Wherever a picture or a figure can enrich the text, we provide
one. Furthermore, ag the lext progresses, we continuousty order the statements
of systerns theory in their overall context. Accordingly, in this book & discussion
of the importance of a mathematical formula or a theorem iakes precedence over
its proof. While we might omit the derivation of an equation, we never neglect
a discussion of its applications and consequences! The nutnerous exercises at the

end of each chapter (with detailed solutions in the appendix) help to reinforce the
reader’s knowledge.



xii Preface

Although we have written this book pritnarily for students. we are convinced
that it will also be useful for practitioners. An engineer who wants to brush
up quickly on some subject will appreciate the easy readability of this text, its
practice-oriented preseutation, and its many examples.

This book evolved out of a course on systems theory and the corresponding
laboratory exercises at the Friedrich Alexander University in Eriangen-Niinberg.
The course is compulsory for students of electrical engineering in the fifth semester.
As such, the material in this book can be worked through completely in about 50
hours of lectures and 25 hours of exercises. We do assume knowledge of the fun-
damentals of engineering mathematics (differential and integral calculus, linear
algebra} and basic knowledge of electrical circuits. Assuming that this mathemat-
ical knowledge has been acquired earlier, the material is also suitable for use in the
third or fourth semester. An engineering curriculum often encompasses complex
funciion theory and probability theory as well; although these felds are helpful,
we do not assume familiarity with thein.

This book is also suitable for self-study. Assuming full-time, concentrated
work. the material can be covered in four to six weeks.

Our presentation begins with contimuous signals and systems. Contrary 1o
some other books that first introduce detailed forms of description for signals and
only much later add systems, we treat signals and sysiems in parailel. The purpose
of describing signals by means of their Laplace or Fourier transformations becomes
evident only through the characteristics of linear, time-invariant systems. Tn our
presentation we emphasise the clear concept of Eigen functions, whose foriz is not
changed by systems. To take iuto account initial staies, we use state space descrip-
tions, which. elegantly allow us to couple an external and an internal component of
the systom response. After covering sampling, we infroduce time-discrete signals
and systems and o extend the concepis familiar from the continuous case. There-
after discrete and contimous signals and systems are treated together. Finally, we
discuss random signals, which are very important today.

To avoid the arduous and seldom perfect step of correcting camera-ready copy,
we handled the layout of the book ourselves at the university. All formulas and
most of the figures were typeset in LaTeX and then transferred onto overhead slides
that were used for two years in the systeins theory lectures. We are most grateful
to some 200 registered students whose attentive and astute criticism helped us to
debug the presentation and the typeset equations. In addition, one year’s students
read the first version of the manuscript and suggested diverse improvements. Fi-
nally mumerous readers of the German version reported typographic ervors and
sent comments by e-mail.

Our studenl assistants Lutz and Alexander Lampe, Stephan Gédde, Marion
Schabert, Stefan von der Maxk and Hubert Rubenhauer demonstirated tremendous
commitment in typesetting and correcting the book as well as the solutions to the
exercises. We thank Ingrid Bartsch, who typed and corrected a large portion of
the text, as well as Susi Koschuy, who produced many figures.
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For their attentive and tireless proof-reading, we especially thank Peter Fisert,
Achim hanmel. Wolfeang Sorgel, Gerhard Runze and Reishard Bernsteiu, For
their generous availability for discussions about tricky mathematical questions, we
sincerely thank Peter Steffen and Ulrich Forster. Edward Kimber has mastered
the ambitiows task of translating the German manuscript into English. Finally, we
express our gratitude to John Wiley & Sons for their uncomplicated co-operation
and their support, of this project.

When the second edition of this hook appears, we would like fo extend our
Hat of acknowledgements, Thercfore we have the following request o our readers.
Please send us your comments and suggestions. The simplest route is per e-mail
to stbuch@LNT.de. Whatever error you might detect and however small it may
be, please do not keep it (o yoursell. 'We pramise that we will take to heart all
sericls comiments.

Erlangen, Germany, October 2000

Bernd Girod Rudel Rabenstein Alexander Stenger
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1 Introduction

Systewns theory concerns signals and systenis. Whiad are signals? What are sys-
temns? Belore defining these terms, let us first examine some examples.

1.1  Signals

Sigrnials deseribe quangities that change. Figure 1.1 depicts the electrical voliage
that o microphene produces in response to the spoken word ‘car’. ‘I'his voltage
correspoids Iargely to the aconstic pressure on onr ear. which reacts to the changes
in this pressure over sime, The curve in Figure 1.1 shows the value of microphone
voitage in relalion to time, Since there is o voltage value for overy point in time,
we term this a confimuons-feme signal. We call tine the wmdependent variable and
the volage changing over time the dependent variable or signal amplitude, We
usnally represent the independent variahle horizontally (2-axiz) and the dependeni.
variable vertically (y-axis).

microphone veltage (mV)

200 300
time {ms)

tigire 1.1 Exanple of a continuous-time signal: voice signal for the syltable “cay’

Figure 1.2 depicts another contivuons signal. The diagrans shows the semper-
ature enrves for a honse wall, not over time, but in refation to the loeation. The
cwrves show the tomperature profile inside a 15 em thick brick wall where the air
tewperature al she right side suddenly rose by 10 K. One hour later the local
tempernture follows the curve represented by the thick Hne, At another time we
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would have a different temperalure curve. In conlrast to Figure 1.1, time here

is a parameter of a family of eurves; the independent continuous variable is the
location in the wall.

-
o

temperature difference [K]
o

o 002 004 006 008 0.1 012 014
location [m]

Figure £.2: Temperature curve for a hovse wall

Fignre 1.3 shows another kind of variable quantity, the stock market index
over time. Although this index chauges all the while the stock market is open, the
diagram shows only the weekly average. Thus the depicted value does not change
continuously, but only once a week. When the signal amplitude occurs only at
certain fixed points in time {discrete times), but not for points in belween, we call
the signal discrele or, more precisely, discrete-{ftme. In our example, however. the
signal amplitude itself is not discrete but continons,

$ Ly

P +*t  Te
2500
. !
2400 !
2300 4 H i
Jan 5, 1956 June 28, 1996

Figure 1.4: The woeekly German stock market index between January 5, 1996. and June
28, 1996

In Figure 1.4 we have entered the frequency of earned marks for a test in system
theory at the University of Erlangen—Niirnberg in April, 1996. The individual
marks assume only discrete values (1.0 — 5.0); the [requencies (in contrast to the
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average stock index) are whole numbers and so likewise discrete. In this case both
the independent and the dependent variables are discrete.

frequency
Py -t n
o o <o

o
3
t

Te1] B

LJ
1.0 1.3 1.7 2.0 23 27 3.0 33 3.7 40 43 47 50
mark

Figure 1.4: Frequency of earned marks for a test in systems theory

The signals we have considered thus far have been quantities that depend on a
single independent variable. However, there are quantities with dependencies on
two or more variables. The greyscales of Figure 1.5 depend on both the x and the
y co-ordinates. Here both axes represent independent variables. The dependent
variable s(z.y) is entered along one axis, but is a greyscale value between the
extreme values black and white.

When we add motion to pictures, we have a dependency on three independent
variables (Figure 1.6): two co-ordinates and time. We call these two- or three-
dimensional (or generally multidimensional) signals. When greyscale values change
continuously over space or over space and time, these are continuous signals.

All our examples have shown parameters (voltage, temperature, stock index,
frequencies, greyscale) that change in relation to values of the independent vari-
ables. Thereby they transmit certain information. In this book we define a signal
as follows:

Definition 1: Signal

A signal s a function or sequence of values that represents wformation.

The preceding examples have shown that signals can assume different forms. Sig-
nals can be classified according to various criteria, the most important of which
are summarised in Table 1.1.
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Figure L.6: MNoving picture ag an example of a continnens three-dimensionst signal

Table 1.1: Criteria for classifving signals

continuous{-time) - discrebe(-time)
amplitude-continmons - muplitude-discrete
analogue - digital
real-valued - cowmplex-valued
mridimensional - multidimensional
Auite domain - inhaite dowasin
deterministic -« stochastic
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We have already discnssed the differcoee between continnous and discrete sig-
nals on the basis of Figures 1.1 and 1.3. Discrete signals are also termed discon-
tinnous. Most of the preceding signals have been amplitude-continuons, hecanse
their dependent variable can take on any value., However, the signal in IMigure 1.4
is amplitude-discrete, for the dependent variable (nwmber of examinces) can as-
sume only intager valnes, Taken precisely, the stock index in Figure 1.3 iy likewise
amplibude-discrete, since the stock index is specified to only a certain number of
decimal places, Signals whose dependent and independent varisbles are continu-
ous arc called unclogie signals. If both variables are discrete, we call the signal
digntal. T'he ontput voltage of a microphone is an analogue signal, for at any given
time amplitude values ean be read with any desired precision. Sequences of values
stored in a computer are always digital, sinee the amplitude values can be stored
only with finite word length in distiner (discrele) storage cells.

All of the signals we have considered so far bad real amplitudes and so are
ctassified as reql-valued. Signals whose dependent variable assumes complex values
arc called compler-vatued,

The signals in Figures 1.1 to 1.1 sre unidimensional, while those in Figares 1.5
and 1.6 arc multidimensional. For reasons of graphic representation. all the signaly
in the previous examples had finite domains of their independent variables and
s0 are classified as finte-domamn signals, However, if we cousider the signal in
Figure 1.6 as the picture of a television camera, then the dowmain of the loeation
variable becomes finive again due to the restricted pictare excerpt. bul the dommain
of the time variable is infinite {neglecting the finite lifetime of the camera).

Signals ave termed defermamnastic if their behaviour is kunown and can be rep-
resented, e, by a formula. The deflection voltage of an oscilloscope is a deter-
ministic signal, for its belsvionr s known and can be represented as a sawtooth
wave, By contrast, we cannot define the amplitude values of a voice sigual (see Fig-
ure 1.1} by means of formulac or graphical elements: furthermore, their continued
bellaviow is not known. Such signals are termed stochastic. Since it is inpossi-
ble to specify their behaviour in termy of functions. such signals ave deseribed by
expected values (mean, variance and many others).

1.2 Systems

1.2.1 What is a System?

We have seen that signals represent information. In many technical applications we
want to do more than just view inforigation: we want fo store, transter, or couple
it with other information. This reguires cstablishing and describing velationships
between signals. This leads us to the definition of a system:
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Definition 2t System 1

A system 15 the abstraction of a process ov object that puls o number of signals
wmto some relationship.

In this general form we can iimagine a system as a black box that communicales
with the outside world via various signals. Figure 1.7 depicts such a system that
establishes a relationship among the signals 2 to =y,

system

Figure L.7° General system

I wany cases we can classify a systont’s signals as input and outpul signals,
Input signals exist independently of the system and are not affected by the sys-
tern; instoad, the system reacts to these signals. Ouiput sigonals bear information
generated by the system, often in response to input signals. The simple systom
in Figure 1.8 has one inpul signal & aud one output signal ¥ We also term y the
spatem. response to .

Naturally a system might contain multiple inpuls and sutputs. The system
determines the influence of individual mputs on the omtput signals. In general,
each outpui depends on all iupuis. To simplify the notation, we combine input
and output signalg tn vectors (Figuve 1.8),

simple system multiple inputs, multiple outputs

X] —e] = 34

— system  —= Xy =™ gystem [ ™32
X Y $4g I

:j system =T

X ¥

Figure 1.8 Input/output systems
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1.2.2 The Domain of Systems Theory

Systems theoty does not encompass the implementation of a systent from given
components, but with the relationships that the systenmt hinposes belweew its sig-
ials. Systems theory represents a powertul machematical tool for the study and
design of systems, because omitting the implementation details helps to maiutain
an overview of the overall system. In systoms theory the foeus is on the formal
nature of the inlerconneeiions rather than any specialisation for specific appli-
cations. This allows systemns theory a uniform represeutation of processes from
different. application domains (e.g., physics, engineering, economics, biology) amd
supports an interdisciplinary view,

The high degree of abstraction brings the advantages of learning economy and
clarity. Learning economy ensues because she regularities of one feld are easier
to transfer to other ficlds if they are formulated in general form. Clarity results
hocause separating the detail problems from the geneval relatiouships is elevated
to a principle. However, this is countered by the drawback of a certain ameunt of
unclearness that encurnbers initial learning in systems theory.

1.2.3 Linear, Time-Invariant Systems

An important subfield of systems theory is the theory of linear, time-invariant
systems. This represents the classical core domain of systems theory and is well
developed, elegant and clear. This theory also proves suitable for describing non-
linear systerms that can be linearised for small signal amplitndes. Systems theory
for linear, time-invariant systems evolved from the practical probiems of electrical
engineering over more than a century [24]. Important application domains for the
theory of linear, time-invariant systems in clecirical engingering today inclide:

e Analysis aud desipn of electrical circuits
» Digital signal processing

o Comnuuications

& Contral engineering

s Measurement engineering

This book covers only Hoear, thne-invariant systeins. Fist, however, we need to
explain the terms linearity and time invariance.
1.2.8.1 Linearity of a System

To define the term linearity, let us consider the sysiem in Figure 1.9, [i responds
to an input sigual £, {#) with the output signal 4, (£} and to the input signal xy(L)
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with the outpul signal y2(¢). Can we deduce the output signal y(t) associated with
the fullowing input signal?

x(t) = Axy (1) 4 Bzal(t) (1.1)

ln general we cannot make this step, but for many relafionships between input
and output parameters, from (1.1) the output signal follows as

Yty = Ap(t) + Byalt) - (1.2)
Examples include the relagionship between current and voltage on a resistor as

given by Ohm’s Law. between charge and voltage in a capacitor, and hetween
force and stretching of a spring according to Hook’s Law.

linear

xl(f) systern yl-( 3}
lingar _

xz([) system yz(f)
linear

Axy(6)+Bxy(D) | SYStem T 4y ()+By (D)

Figure 1.9 Defimtion of a linear system (A, B are arbitrary complex constants)

The relationship expressed in {1.1). (1.2) is called the superposition principle.
It can be defined more generally as follows:

Definifion 3: Superposition principle

If the response of a system to a lincar combmation of mput signals always
consists of the corresponding combination of the mdindual outpuf swgnals, then
for thas systemn the superposition principle. applies.

Due to the great importance of such systems, we also use a more tangible term:

Definition 4: Linear systems

Systesns for which the superposiion principle applics are called linear systems.
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For the system in Figure 1.9 the superposition principle is

2t} = Ay (8) + Baa(l)  —  ylf) = Apll) + Bya(t). (1.3)

Here A sad B can be any complex constants, The superposition principle can
be extended directly to linear combinations of more than two signals [19] and
formulated for systems with multiple inpats and outputs [23]. One important
special case derives directly from (1.3) with A= B =1

() =0 — gt} =0, vieR. (1.4)

Tf we apply to the input of a linear system a sigaal w(f) that s elways vull. then
Lhe oubpud signal must also always be mnll: otherwise it is not a linear systen:,
However. equation (1.4) must not be misinterpreted as indicating that at every
point. in tiine at which the input signal passes through zero. the ontput signal st
also pass through zero.

To be precise, Lthe superposition principle applies for real sysiems ouly for a
restricted range of the constants A and B. For the voltage drop st o real resistor,
Ohm's Law applies only within limits where the resistor is noet destroyed by the
heat produced in it. Even within these limits. we observe small devialions from
Ohm's Law caused by the temperature dependency of the material parameter. On
the other hand, resistors are normally operated only within the currency and volt-
age ranges in which deviations from Ohm's Law are negligible. The same applies
analogously for all other applications of the superposition principle, Assuming the
linearity of a system is thus always an idealisation that applies at acceplable pre-
ciston only within certain limits. However, since this assumption very significantly
simplifies the analysis of systems, il is employed as rouch ag pogsible,

1.2.3.2 Time Invariance of a System

The second important system characteristic that we generally assnme in this book
i thine invariance, If we know. as in Figwe 1.1, the respouse y(t) of a sysiem
to the input signal #{f). can we then conclude the response to the iupul sigual
x(t — ), delaved hy time ¢? Certainly this is possible if the characteristics of
the system 8 do not change over time. The response of the system would bhe
the same, so that we can count on a correspoudingly delayed output signal for a
delayed input signol, This consideration leads ns directly to the definition of &
Lhne-invariant systom:

Definition 5: Time-invariant system

A system thut responds to o deloyed wnput signal weth o correspondingly delayed ;
output sl 18 called o time-lnvariant system. {

This definition can be gonervalised for systems with multiple npnts and outputs



10 1. Iniroduction

[19]. In the definition we could exchange a delayed aud a nondelayed signal and
recognise that the delay in Figure 1.10 could agsume positive or negative values.

—_——] 8§ |

Wty - oyl
-7y — yt-1)

Figure 1.10: Definition of a time-invariant. systemm

1.2.3.3 LTI-Systems

Einear systems arc not generally iime-invariant. Eikewise, time-invariani systems
need not be linear. However, as already mentioned, systems that are both linear
and time-invariant play & particularly impottaunt role in systexns theory, They have
been assigned the acronym LTL

Definition 6: LTI-system

A system that 15 both time-mwaruent and lneer s termed on LT1-system
{ Lanear Time-Tnvariont sysiem).

The characteristics of LTT-systems and the tools for their analysis are the subjects
of subsequent chapters.

1.2.4 Examples of Systems
1.2.4.1 Electrical Circuits

As an exaple of the description of an electrical circuit as a system, we employ
the branching circuit in Figure 1.11. The time-dependent voltages u,{f} and uy(t)
represcut continuous signalg, such ag the voice signal in Figure L1. The circuit
establishes a relationship between two signals and is thus a system. To abstract
away from the electrical nature of the inner workings and the enclosed components
with their regularities, we move (o the representation as an input/output system
in Figure 1.8, As long as we have no further information on the origin of these
signals, the assignment of input signals to output signals is random. The laws of
circuit theory for the idealised components {ideal resistors and capacitors) allow
us to repregent this circuit as a linear and time-invariant system (LTI-system).
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R Ry R
Q | } ! } [ L Q
LT (I l ]
lul(r} C Cy Cs iuz(!)
: 1 :
—— ] system ——m
u (6 y to(t)
(inverse)
rarane I
uy (0 system (1)

Fignre 1.11: Electrical circuit as a system

1.2.4.2 Further Examples of Systems

Figure 1.12 shows additional examples of well-known relationships drawn using
system theory,

position of
gas pedal SR
car —3 speed
position of ]
brake pedal

acoustic pressure telephone acoustic pressure

of the mouth —-— — at the ear of the
network ]

of the speaker listenier

—— gross national product
; national ; .
interest R TN onomy inflation rate

——i Unemployment rate

Figure 1.12: Examples of systens

The speed of a car depends on the positions of the gas and brake pedals. This



12 1. Introduction

relationship can be represented by a system with two inputs (the positions of
the respeetive poedals) and one output {the speed), The system is certaiuly not
Huear. For exampie, the relationship between responsges to the positions of the
gas pedal and brake pedal is not simaple, as would be the case in a Hnear syslen
ustead, the braking effect depends on the speed and thus on the preceding position
of the gas pedal. Also, the system is not time-invariant, since the gas pedal
(input parameter) affects the speed (outpnt parameter) differently depending on
the position of the gear shift lever and the inclination of the sireet. Under ideal
conditions. [or exaniple, with an automatic trapsmission on a flat, straight test,
route, the system wonld appreach thine invariance. Over the same time. given
angles of the gas pedal and brake pedal would result in the same speed at a later
time. In practice, time invariance is a frequent goal in technical systems in order
to ntake the system response predictable.

The second system deseribes a telephone petwork with the acoustic pressure
from the mouth of a person (speaker) as input sigrnal and the acoustic pressure at
the ear of another person (listener) as output signal. Af first glance. in the range of
acoustic amplitudes that occur while telephoning, the system can be viewed as lin-
ear and time-invariant. However, if we do not wish to neglect distortion and other
disturbances, then this idealisation as a linear system no longer applies. Likewise,
the systent is time-variant (Le., noi tie-invariant), because a later connection
might yield different transmission quality.

The third exanple shows tho applcation of systems theory to a nonteehnical
domain. The interest rate established by the national benk influences the economy,
which can be assessed via various parameters such as the gross national product,
the inllation rate. and the unemployment rate. In contrast to the automobile and
telephone examples above, here our system analysis cannot establish relationships
between inpui and cutput parameters based on recognised laws of nature. Instead.
we have economic models that more or less describe economic phenomena. Here
a systomn deseription is based on the assurmed validity of the underlying model.

In all cases the system descriplion is based on simplified assumptions, for it
is never possible to incorporate all parameters into a model. Thus the speed of
a car also depends on a number of other parameters, such as the road condition,
the wind direction and velocity, tle fuel quality, and the vehicle’s condition. For a
single vehicle and with painstaking effort, it might be possible to accommodate all
paramelers correcily. On the other hand. to describe the functioning of a world-
wide telephone network, we would never succeed if we began with the Maxwell
equation for each electrical componeut. As a major strength, systems Lheory per-
mits describing input/output relationships on different levels of abstraction. It
makes sense to begin a system analysis with few parameters and simple mod-
els. As necessary, individusl systems can be modelled more precisely with more
detailed subsystems.
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Table 1.2: Criteria for classifying systems

continwous -  discrete
analogue - digital
real-valued - complex-valued
imnidimensional - mudtidimensional
deterministic - stochasgtic
catnsal -  noncausal
with memory - memoryloss
lincary - nonlinear
time-invariant -  time-variant
translation-invariant -  translation-variant

1.2.5 Classification of Systems

As with signals, we can classify systoms according to various criteria. The most
important. criteria are swmmarised in Table 1.2.

A number of these criterin are familiar from signals, Thus continuous or dis-
crete. analogue or digital, real-valued or complex-valued, unidimensional or mulli-
dimensional systems are systems that establish relationships between signals with
these eharacteristics. A digital system is thus one that processes digital signals. A
gystem is cansal it its response to the arrival of a time signal does not begin betore
this arrival. This sounds trivial, for all gystems described hy the laws of nature
are necessarily cansal. However, some important idealisations result in noncausal
systems. Iu some cases it iy easier to work with idealised, noncausal systems than
with real. causal ones. Furthermore, there are systems whose independent variable
is ot time. For memoryless systems, the response to a tinle signal at a ceriain
time depends only on the value of the input signal at the same time. Iy contrast,
for memory systens the values of fnput signals of ofther times also play a role;
naturally, for causal wemnory systoms these other values mmst be those of previ-
ons times. Lincar and iime-invariant systems wore discussed in Sections 1.2.3.1
and 1.2.3.2. For systems whose input parameters depend not on time bul on other
ndependent variables, we can define a characteristic corresponding to time invari-
ance. Thus the temporal delay in a location-independent signal {e.g.. a picture) is
a transtation, In more general ferms, this is a translation-invariant system.

1.3 Overview of the Book

Chapter 2 shows several possibilities for deseribing comtimmons-time LTT-gyslens
over time. We base the material on known methods for solving linear differcntial
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equations with constant coefficients.

Studying LTL-systems over a frequency range {Chapter 3} leads us to the repre-
sentation of continuous-timne signals with the help of the Laplace transform, which
we discuss in detail in Chapter 4. Chapter 5 presents the inverse formuls of the
Laplace transform: and its fundementals in complex function theory. The analysis
of LTEsystems with the Laplace transform and its characterisation via the sys-
tem function is the subject of Chapter 6. Although linear differential equations
with constant coefficients and specified start values are no longer LT)-systems, LTI
methods can be elegantly extended for this important class of problems {Chap-
ter 7); this oceurs primarily via system description in slate space.

Another kind of characterisation of LTT-systems in time by convolution with
the impulse response ig discussed in Chapter 8. In order to be able to describe
the impulse response mathematically, we introduce generalised Functions in this
eontext.

An ingegral transformation cqual in lmportance to the Laplace transform is
the Fourier transform, whose characteristics and laws are discussed in Chapter 9.
The graphical analysis of the frequency response of systeros by means of Bode
diagrams is the subject of Chapter 10.

Chapter 11 concerns sampled and periodic signals as well ag the sampling theo-
rem and leads us to discrete-time signals and their Fourier spectrum {Chapter 12).
In Chapter 13 we handle discrete signals with the z-transform, the discrele coun-
terpart of the Laplace transformation, and in Chapter 14 we use it to analyse
discrete-time LTI-systems.

In the subsequent chapters continuous and discrete systems and signale are
treated in combination. The characteristics of causal systems and signals and
their description with the Hilbert transformation is the subject of Chapter 15,
and Chapter 16 presends stability characteristics of systems.

In Chapter 17 we introduce random signals and their description via expected
values; in addition, we discuss a frequency response representation of random
signals via power density spectra. Finally, Chapter 18 is dedicated to the question
of how expected values and power density spectra are modified by LTT-systems.

1.4 Exercises

Exercise 1.1

Are the following signals amplitnde-discrete. discrete-time and/or digital?
a} number of days of rain per month
b} average high temperature per month

¢) current temperature
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d) momentary population of China
) daily milk production of a cow
£} brightness of a pixel on a television screen

Exercise 1.2

Are the signals stored on a computer hard disk analogue or digital signals? Answer
the question from different viewpoints.

Exercise 1.3

An ideal A/D converter could be constructed as follows:

. system 1 ; system 2
sample & hold ) quantizer
] *3 *3

a) Which of the signals xy ... 23 arc analogue, amplitude-discrete, discrete-time,
digital?

b) For both systems. specity whether they are linear, time-invariant, analogue,
with memory, causal.

Exercise 1.4

Which of the following system descriptions designate linear, time-invariant, mem-
ory, or causal systems?

a) y(t) = x(t)

b) w(t) = 22(¢)

c) yit) =2 ~T). T >0 (delay component)
d) y(t) =x(+T), T >0 (accelerator)

dx
e) y(t) = s

t
f) yit) =% [ =(t)dt' T >0 (moving average)
=
dy : -
g) Fn +ay(t) = x(t) (electrical cireuit)

h) y(t) =x(t—T#)), T()>0 (phase modulation)
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 ylt) == —2®). T(t) arbitrary
Exercise 1.5

Two gystems &y and S respond to an input signal ©(t) with the outpul signals

ik
=

—
b )

=
|

Si{z{t)} = m x(t) - cos(wrt)
Sofz{t)} = [I+m-z(t)] cosfwrt) meR.

P
—_—
?1-
L
|

Are the systems a) linear. b) time-invariant, ¢) real-valued, d) memoryless?

Exercise 1.6

A black-box gystem is (o be examined to determine whether it fs fime-invariaut
and linear. Three measurementis of the system yielded the following data:

1. Input of 2y (f) produces the cutput signal ¢ (¢).
2. Tnput of z3(¢) produces the output signal y.(t).

3. Input of 23(t) = o1 (¢t — 1) + x2(¢ — T) produces the output signal ¢() #
n(t =T +ya(l - T).

Can you make an unambiguous statement about the above systern characteristics?
Defend your answer.



2 Time-Domain Models of
Continuous LTI-Systems

Tu the last chapter we introduced the concept of systems and scine of their general
properies. In this and some of the following chapters we will get to know some
of the different methods that can be used to model these systetns. We will begin
by looking at continzous-time systoms and restrict owselves to LTT (Liuear lime-
mvariant)-systems.

[n Chapter 1| we established a requirement lor a syslem nodel in which we
are not concerned about the details of the individual components. Instead, we
are looking fur a standardised form of system wmodel that represents the input-
output characteristics of a systemn by mathematical equations, independent {remn
the implementation of the systen.

This chapter deals with the following three modelling technigues [or conthmons-
time sysbems;

o differential equations as a mathematical representation of the input -output
relationship,

¢ block diagraws as a graphical representabion of the relationship between
input, outpus and mternal states,

& state models that are the equivalent of the block diagrams.

Common to all three of these modelling technidues Is the use of time-dependent
signals. in which the derivative and the integral with respect to time playe an
important role. Therefore these types of system model can be classified as *time-
domain models’. Their complements are *frequency-domain models’. which will be
exantued in the next chapter.

2.1 Differential Equations
2.1.1 System Analysis

Our goal is to find a system model withont details of the system implementation.
Ilesw can this be achieved? We will use the analysis of an electrical eircuit to show
the essential steps,
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In many cases it is possible to ignore the spatial expansion of electrical com-
ponents on g circuit hoard. and instead work with equivalent circuits cousisting
of concentrated elements, Semiconductor dovices are an example of this becausce
their complicated internal behaviour can only be accurately modelled using solid-
state physics. Their effects within an electrical cirenit are, however, olten linear
enough to be adequately modelled by simple components like resisiances and ideal
S0NTTE.

The second step is the replacement of the physical components with their
ilenl equivalents, for example, real resislances become ohmic, wires become ideal
conductors. eapacitors have ideal capacitance. eic,

The resulting electrical networks (for example, Figure 1.11)} can be analysed
using standard methods, for example. mesh or nodal analysis [18, 22]. This resulls
in ordinary differential equations with constant coefficients, in which only the input
aied output signals and their derivatives oceur.

This process can also be applied to other physical arrangeinents which, like
clectrical circuils, can be deseribed by potential (e.g. electrical voltage) and flow
quantities {e.g. electrical current). The analysis accordingly simplifies mechanical,
pneumatic, hydranlic and thermal systems to differcutial equations. Lhe same
applies to other kinds of system, for example, lrom chemistry, biology or econommics.

The shnplifications mentioned are of course not abways permissible. Ordinary
differential eguations are, for example, unsuitable for the fleld of Huid dynamics
probiewms. In many other uses, however, they are of great tnportance, and we will
therefore examine them in more depth.

2.1.2 Linear Differential Equations with Constant
Coeflicients

Differential equations establish relationships between derivatives of dependent
quantities with respect to independent variables. They are called ordinary dif
ferential equations if the derivatives only oceur with respect o one of the indepen-
dent variables {c.g. time). Differential equations witle derivatives with respect to
more than one independent variable (e.g. time and three spatial coordinates) are
called pertral differential equofrons. A differential equation is said to he lnear if
ihe individual derivatives are only multiplied by factors and combined by addition.
Additionally, if Lhe factors of the derivatives do not depend on the independent
variables, the term “differential cquation with constaut coeflicients’ 1s nsed.

For modelling of continuous-time systems, we Just need ordinary differeintial
equations with time as the only independent variable. In such equations the inpug
and outpul signals of Lhe system must oceur as dependent. variables, We will
goon discover that linear, and time-invariant systems can be inodelled by livear
diffevential equations with constant coefficients, so we will restrict ourselves to this
type of equation.

Sunple examples for linear differential equations with coefficients are
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J+2y= (2.1)
J+dy=2y=2i—x. (2.2}

The general form of an ordinary linear dilferential equation with constant coefft-
clents 13 N y
N - d*x .
Zad—;’ =Y e (2.3)
=) fe=0)

The greatest index N of a non-zero coefliciend, v determines what s called
the order of the differential equetron. In order to simplify this discussion, we let
M = N and allow some, but not all of the coeflicients A to he equal to zero.

For a given funceion @x(t) there are up to N diflerent Inearly mdependent so-
lutions #{£) to (2.3). Por a particular solution, we need to give & conditions. For
initiat condition problems, these would be & initial conditions y(0). #(0}. 4(0)... ..

The diflerential equation (2.3) describes a continuous-time systew, if (#) is the
mput signal, and y(4) & the output signal. In order to characterise this system,
we rofer back to Definitions 4 and § and also Figs. 1.9 and 1.10. For now, we
ignore possibly given initial conditions; their influence will be diseussed in depth
in Chapter 7,

Lot us now show that (2.3} represents » thime-invariant system. Through sub-
stitution of vartables ¢ = -~ £ in (2.3}, it follows imnediately that 2(t— 7) leads to
the selution y{t — 7). To show linearity wo consider the lwo different input signals
oy (t) and xe(t) and the corresponding solutions iy (£) and y2(t). Plugging the linear
equation w3(t) = Az (£) + Bxo{t) into (2.3) verifies that y4{f) = Ay () + Byali)
I+ a solation of the differential equation, and thorefore the output sigral of the
svstant.

Every system that can be modelled using linear differential equations with
constanh coefficients (2.3} is thus an LTT system. This means we have found our
firgt miethod for modelling such systeins in the lorm of a differential cquation. This
method fulfills our initial requirements:

e Modelling of an LTI-svstem: indapendent {rom its realisation.

e Representation of the input- output relationship, without details of the sys-
tem’s internal behaviour.

2.2 Block Diagrams

Block diagraws can represent more information than differential equations as they
show 1ot only the input and output signals but also internal states of a system. IT
only the input-output relationship is of interest then the choice of internal states
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is not relevant. and there are many block diagrams that correspond to the samne
differential equation. In case additional specifications of the internal structare
are available, the block diagram ean be constructed in a way that represents the
internal states of the systom, for example, the energy stored iu the components of
an electrical network,

From the many possible structures of block diagrams, there are some which
are particnlarly suitable if the differential equation of a system is already known.
We will exaniine three such structures in more detail,

2.2.1 Direct Form I

Our slarting poiut is an LT T-system that is modelled by differential equalion (2.3).
with M = N. We integrate bolh sides N times.

N N

Za] f yudt = Zb&. [ adf (2.4}

o (9 o R

with o, = ay_; and G = Sy, We write f(ﬂ yedt for the »-times integral

3 o 4N Ta
/ gt = / j / ywodde | . dey | de, . (2.5)
(i} — s el .

The rearrangement,

N

N
]. i ] )
i [ ydt = — E hk-/ xdt — g at} ydt {(2.6)
S B (k) S

N iy

=z} w==1

leads inmediately to the block diagram of an ETT-system in ‘Direct forme 17 {Fig-
ure 2.1}, The rectangular boxes represent multiplication by the factor shown
within, ov alternatively a single integration, and the cirele with a sununation sign
stands for addivien of the input signals.

The advantage ol block diagrams with this structure is that the cocliicients
af the differential equation appear directly as the values of the multipliers. The
disadvantage is that for a N-order differential equation, 2N integrations nmst he
performned.

2.2.2 Direct Form II

We will now construct a new form of block disgram with a different structure that
only uses ¥ integrators. To create the new structure, we manipulate direct form
I. interchanging the first and second stages (Figure 2.2). This i permissible. as
cascaded LTI-systems can he interchanged without atfecing their overall transfer
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Figure 2.1: LT1-Systoin in direct form i

function. We will show this general concept more elegantly in Chapter 6.6.1 with
the help of a frequency-domain model. At the moment. however, we will just view
this property as a useful assumption. Both cascades of integrators in Figure 2.2
run in parallel since the inpni gsignals of the integrators from thne + = —o¢ are
equal, and so are their output signals. We can therefore unite the two cascades.
arriving atb divect forre II shown in Figure 2.3.

As with direct form 1, the multiplier coefficients of direct form 11 are the co-
efficients of the differential equation. More imiportantly, this form requires the
ouly N integrators, the minimum number for an N-order differential equation.
Block diagrams that use the roinimum number of energy stores (integrators) for
the realisation of an N-order differential equation are also called canonacal forms.

The signals 7. = 1,., .. N al the integrator cutputs describe the internal
state of a systoin. that s not only modelled by the corresponding differential
syunation (2.3}, but is further given an internal structure by direct forin T1, Without
knowledge of the actnal realisation of the system, this assignment of states is. of
conrse, entirely arbitrary,

We constructed divect form I directly fram the differential equation, and it is
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Figure 2.2: Derivation of the block diagram for direct form I from direct form 1

clear that systems with this structure satisfy the differential equation (2.3). We
still need Lo ensure that direct form 1 satisfies the same differeniial equation.
After all, we made use of the as yet unproven assumption that the two stages of
dircet form I can be interchanged to create direct form II. To verify dirvect form 17
we first express the inpot signat 2 and the output signal ¢ in tertms of the states
. i=L1L.,.N.

The lnpne and output signals are linked through the states at the integrator
outputs, but also directly through the uppermost path, and of course we have to
consider this path as well. To sitaplify the notation we introdnce another iuternal
signal zy. and ernphasise that it does nof represent a state.

Trom the block diagram (Figure 2.3) the relationships

N

N
B == Z b; =, and Zy o= L & - Z”’" % (2.7)

(@
pparn 0

P
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Figure 2.3: An LTl-system in direct form I1

are obtained directly. The Jast relationship can be rewritten as

A

& e Z”" z . (2.8)

2:==0)

Additionally. every state variable z, can be obtained by integrating 2z ¢ times.
= / codi (2.9)
S

We now insert (2.7) into the left-hand side of the integral equation (2.4) which
is equivalent to the diflerential equation {2.3). By interchanging the order of the
summalion and integration, and further using (2.9}, we obtain

N
Z”‘*‘/ ydt = Z“‘”[ Zh“‘ dt =
k=0 (&}

o (k) =0
NN N N

LZG‘}J)*/ z,dt = Za;‘b f zgdt . (2.10)
Fe) 1) Eet) e=i) (k43

Integrating zy repeatedly & + 1 times is equivalent to integrating ;. repeatedly
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i times. Interchanging ke order of integration and summation yields

Y
Za.k/ ydt:ZZak fq,df'—be Za,i.,,m (2.11)
g=t K] ]

k=0 v=2i) (0 =t} Ve=0

The last st we recognise ag z as in {2.8), hence the integral equation (2.4) is
patisfied. This shows that the input and output signals of a system in direct form
II indeed satisfy the differential equation (2.3). as we had hoped.

Example 2.1
We will construct a block diagram for the equation

4 g4 2y = =3& |-, {2.12)

We can creale the direct form 11 block diagram shown in Figure 2.4 directly from
Figure 2.3,

xft)

1)

Figure 2.4: Exanple of a divect form II block diagram [Example 2.1]

2.2.3 Direct Form II1

The coustruction of another commonly used structure again originates with the
differential equation (2.3). In conirast 1o direct forms [ and 1T we will make no use
of integral equations or rearrangement of block diagrams. Tastead we obtaln the
slate variables directly frown the differential equation. The transtormation takes
N steps, each made up of the following elements:

» rearrangementh of the ditferential eqnation
s introduction of a new state variable

s integration
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]
L

In the first step the differential equation is rearranged so that all the derivatives
are on the left-hand side. The remaining right-hand side becomes the derivative
of Lhe new state variable =

N y Y dkbx :
A 2 — = Zar . (213
ey Z Ok 7o Apx — oy = En (2.13}

FER A=l
After integration we obtain
_..;'.' 4 Nl L

g 1= Gl e = 7y 2.14
L M1 %,” kbl = (2.14)

The secomd step starts again by collecting all the dertvatives o the left-hand side
and introducing a new stale variable for the right-hand side.

3 dty d¥r -
Z = o7 Z eyt =— v =z O — Yy =& . {2.15)

Integration and changing indices yields

N2

dhy iy dx oy
; H‘H_ZTt" - ;J .lik[z—d'ﬁ' = IN_1 . (216}

With the Mth step only the frst derivative with respect to thine remains
ey d . ;
an— — In— =+ Iy 1r - an_1y =3y . 217
N o PPN Nl =3y (2.17)
The final integraiion vields
CGNY — Sy = 3. (2.18)
Before drawing the block diagram we summarise the important equations and
rename (he coefficients such that a, = an_,. by = Fv_s

1
Y = [;1 =+ b J‘.}
] g
] = Ao + by — [iR¥
32 = +  br = gy (2.19)
Enoy = iy + hyar — an.ay
N bye - any

The block dingram represeniation is shown in Figare 2.5. It ¢an also be ob-
tained graphically from diveet form 1T (Figure 2.3), it

e input ¢ and output y are exchanged.
o all arrows are reversed and

e surimation and splitting nodes are exchanged.
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x(1) Y1)
~| by | /0, =

iN
=i by {2 - (ap |

Fignure 2.5: LEL-gystem in divect forn 111

Example 2.2
The structure of an LT T-system in direct form HI can be obtained for differential

equation (2.12) from Example 2.1 through the steps described above., As it iz a

differential equation of the second order. two steps have to be performed transform.
The first step introduces the state variable zg:

dij—p=3t = w—2y=3% (2.20)
df—y+3x = . (2.21)

The second step inlroduces the state vartable zp:

dy = zm—Jr+y=12 {2.22)
y = 2 ‘ (2.23)

The block diagram in direct form III can be formed from the equations

|

2 — 3w + ¥ (2.24)

by
g
I
[
|
b
k-~



2.2. Block Diagrams 27

(1) x1}

Y
L

Figure 2.6: A dircct form 113 block diagram {rom Example 2.2

and is shown in Figore 2.6,

2.2.4 Why not use Differentiators to Build LTI-Systems?

Block diagrams and differential equations are equally valuable forms for modelling
LFsystems. With block disgrams of the diveet form 1, IT and T the correspon-
dence of the block diggram and differential equation is sufficiently strong that the
coefficients of hoth forms agree. The most striking diflerence is that diffevential
equations are made up of derivalives, wliereas block diagrams contain integrators.
Why not remove this differcnce and construct block diagrams using differentiators?

If block diagrams only existed as models of already implemented systems. then
using differentiators would make no difference. Block diagrams also have another
useful task, however: they serve as o model for the realisation of systems which
do not yet oxist. The required transfer fmclion can boe mathematically fornmg-
lated as a differential equation and converted into a block diagram, from which
the individual components can then be created. In order to decide whether differ-
entiators or imtegrators are more sultable as a starling point for implementation,
the characteristics of the gignals wvobred must be considered.

Every analogue signal i8 subject to corruplion by noise, ie., it contains un-
wanted and generally rapidly changing components, Differeniiators ampiify rapic
signal changes and thas increase the level of nuwanted noise. Integrators. how-
aver, smooth and wappress the undesivable noise. It is for this reason that block
diagrams formed with integrators lead io superior, more vobust realisations. An
example for the physical realisation of an integrator follows in the next section.
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2.2.5 Electrical Implementation of an Integrator Using an
Operational Amplifier

Qperational amplifier {op-amp) circuits are an hmportaul exampie of the electical

implementation of integrators. Op-amps are semicondnctor swplifiers that wsualty

come in the form of integrated circuits and can be well approximated using a very

sitnple nodel.

Us

1 Uy = A7, — )
> Uy

Figare 2.7- Symbolic representation of an op-amp
An ideal op-amp (Figure 2.7} has the following characteristics:

¢ The input impedance is infinite, ie., no currenl flows between the (4+) and
(-) terminals.

o ‘The outpul Impedance is zero, hence the output is an ideal voltage source.
» The amplification {actor A is infinite (> 10° for a real world op-amp).

o If negative feedback is applied, I/, = 5, i.c, both input tenninals are at
the same potential.

With ihese characteristios it is easy to show that an op-amp with eapacitor feed-
hack intogrates the input voltage u, {f).

Z(I) Mc(f_)

—_—

R i(n) ¢

M;(Iw

o l + i ,l u2(1)

Figure 2.8: Op-amp with feedback cireuit

Because of the infinite input. impedance the current i(#) through the resistor B
is equal to the eurrent through the capacitor ¢*. The infinite amplification forces
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the two terminals to the same potential. hence the voltage across the resistor is
equal to the input voltage uy(f). The current i{t) is therefore:

ul(":) . _Cvijﬁ
R dt

From that follows the required integral relaiionship between w () and wa(¢):
ug(t) = L wy ($)di {2.26)
RC\‘ R
The circuit given is thevefore an integrator of the input voltage. As addition and

multiplication are likewise possible using op-amps with other cirenit configurations,
svatems ean he implemented as electrical cireuiks directly from block dagrams.

2.3 State-Space Description of LTI-Systems

In Section 2.2 we had already nsed the concept of the state of a systen loosely.
Now we will givee a formal definition.

Definition 7:  System state

The system state w5 @ vector of internal varwables with its future values depen-
dent on us current values, which fully captures the effect of the post on the

Juture behawmowr of the system.
S __r

|
|
|

We saw with the introdiction of block diagrams thal the use of internal states
leads to a more intbdilve system representation than a differential equation alone.
The choice of the vartables is. however, arbitrary because the differential equation
describes the input—cutput function and does nol contain any information about
the internal behaviour of the systen.

The state-space description offers the possibility of representing the internal
form of a system in a standardised for of differential cquations. In contrast to
the differential equation (2.3). that is a single equation of order N, the correspond-
g state-space ropresensation i a system of N first-order dillerential equations.
Fach differential equation is valid for one of the N so-called state variables (state
sauaiion). The output signal ig obtained by a lincar combination of the states
(output equationt.

2.3.1 Example of the State Model

The following example shows how the state raodel is used to represent an electrical
cirenit. The RLC cireuil in Figure 2.9 can be exainined using the standard methods
of circult analysis,
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R;
o— }
x(t) i ¥1}
0

Pigure 2.9 RLC cireunit

The sum of the voltages in both meshes and the sum of the currents in the
node yield

L %_ o ~Ryir() - wm(t) - 2{t) (2.27)
di .
[ . (2.29)
dat
The output volbage y{1) is the voltage drop across the resistor Ry
q(f) = “‘R‘E?‘.Q(t} . (230)

From these three fivst-order differential equations we could eliminate 4. iy and wy
and obtain a third-order differential equation in the form of (2.3). However, this
would result in the loss of information about the internal energy stores that deter-
mine the system behaviour. Instead, we represent the equations {2.27) to {2.30)
i matriz form:

iy 1
i | -
iy (£) Ly R J[il 21 (1) fl
a2 = 0 —L—3 -3 L) 4+ g | e (231
e (t) 1 1‘2 UQ uy (£} 0
C <
i(E)
y(t) = [0 Ry 0] 4(t) : (2.32}
ur ()

(2.31) and (2.32) are a system of three connected first-order differential equations
and an algebraic equation. The thres dilferential equations can also be viewed as
a matrix differential equation for the vector

1(2)

41 f\t}
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1k eontains the voltage uy across the capacitor and the cucrents 49 and iz through
both inductors, They characterise the system’s three energy stores and are state-
variabios.

2.3.2 (General Form of the State Model

We gan easily generalise the previous example to arrive ab the general form of the
state-gpace description. With the abbreviations A. B, C.D for the vectors and
matrices in (2.31) and {2.32) we obtain the [ollowing standardized form of the
first-order matvix differential cquation and of the algebraic equation. It is given
here for the general case with M inputs aud A oulputs

z = Az + Bx {2.33)
v = Cz + Dx. {(2.34)
Where: X: column vector Al inpul signals
e column vector IV state variables
¥ eolumn vector K output signals.

The matrix differential equation {2.33) is called the stafe eguafion and the
algebraic equation (2.34} i called the output equation. The N x N matrix A is
called the system matrix. 1t describes how the change of the state vector 2 depends
on the instantancous value 2, The matrices B (size N x M) and C (size K x N)
chiaracterise the infuence of the input x on the state z, and the effect of this state
or the onutput y respectively, The matrix D (value K x M) describos the direct
influence of the input on the outpat.

In the example in Section 2.3.1 with only one input and one output (M = K =
1}, B is a column vector and C is a row vector, and there is ne direct influence of
the input on the cutput (I = ().

Adthough in this example we glarted with a speeitic realisation of a syslem in
ilie form of the electrical notwork in Figure 2.9, the stale model does provide a
universal representation of a system behaviour., FThe internal working of the system
as given by the details of the network is captured by the states of the three energy
stoves., Togetber, these gystem states contain all relevant information about the
past of the system. Starting with an initial state z(ty) at time £, we can uniquely
determine the state of 2(#) at any future time #. il the nput signal 2(t) is know
betweon ty and £.

The state-space description is especially advantageous for systems with many
mpats and ontpruts, for which working with scalar equations with many variables
would De very curtbhersome.
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O} course, there exists a close relationship between the state-space representa-
tion. the block diagram and the differential equation of an N¥th-order LT1-system.
We will examine an example of this in the next section.

2.4 Higher-order Differential Equations,
Block Diagrams and the State Model

In order to establish the relationship botween the models for LU -systems previ-
ously examined, we cousider the direct form Il bleck diagram in Figure 2.3 and

look for the corresponding state model. We represent the integrators in Figure 2.3
by the difforential equations

=z, i=1....N. (2.3%)

'e have already expressed the input signal of the first integrator vhrough the state
variahles and the input signal in {2.7). Substituting {2.35) in (2.7) and collecting
the scalar variables gives the state equation

R R AL S S S VI R O
. ) i ftgy Ay
oY) 1 ] =2 0
Z 0 1 0 4 2 R N i y
ap
: : : 0
Liv ] Lo 0 .. 1 0 ] L] L0

(2.38)
The output equation can be imuediately taken [rom divect form II (Figure 2.3}
Note that from every state there are two paths to the ontput: one through coetii-

1 . , . .
cients by, and one through a,, — and by. Therefore the ottpat equation hecomes
g

The equations (2.36) and (2.37) represent the complete state model of the system
given as a direct form 1 block diagrain,

As the divect form I realises the mput—outpul behaviour of the integral equia-
tion (2.1). or alternatively, differential equation (2.3), a connection iz also estab-
lished hetween the N th-order dilferential equation (2.3) and the mabrix differential
equation {2.33). We can make this cven more E'.}»pll{,lt by writing the state model
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with coetlicients ¢y, = oy, and 3; = by_, of the differential cquation (2.3). Cor-
respontdingly, we re-index the state variables as ¢ = sy _p1-
Then the state model is

{ = A{+ Bz (2.38)
y = C{+Dx (2.39)
with the matrices
C 0 1 0 0
A = 0 6 ... 1 0 (2.40)
0 )] 0 i
ap oy 2 a1
| an N N |
0
| :
B = — |- (2.41)
fEnr 0
1
I In ; v
C = |5 - f--‘-'r}‘—{.l'() - Bar_y — Llﬂ._N-__l {2.42)
] N an
3: i
D= (2.48)
€ea

The elements of the state matrices A, B, C. D, can he calculated directly from
the coefficients of the differential equarion {2.3). The special form of the system
matrix {2.40) for direct form I is called the Frobenius matrae.

2.5 Equivalent State-Space Representations

The state matrices (2.40) to (2.43) describe ouly one of many possible structures
of block diagram. here direct form 1. Alternative structures that vield the same
input-outpul hehaviour can be obtained by transforming other state variables.
This transformation can be formally expressed by the multiplication of a state hy
a Lransformation matrix T

z="Tz. (2.44)

In thix equation 2 is the new stale veclor. The transformation matrix T of size
N x N must nob be singnlar, 5o thar inversion is possible, bhut otherwise there are
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no restrictions. Substitution into (2.33) and (2.34) and multiplying both values
by T~ gives the vew stale-space equations

= Az + Bx (2.45)
= Ci + Do (2.46)
with the matrices
A = T AT (2.47)
B = 1T'B (2.48)
C = CT (2.19)
D = D. {2.50)

These are equivalent to (2.33) and (2.34), i.e., they correspond to the same
Ntheorder differential equation. Through the selection of a transform watrix T
arhbitrary state models can be produced for a given differential cquation.

Some state wodels have special properiies. For example, if the translormation
matrix T is & modal matrix with regard to matrix A, then the new system matrix
A will be diagonal. The corresponding type of siructure is called parallet formn.
An example of this [orm with one input and one output is shown in Figure 2.1).
ere we asstme that there is no direct path from input to output, ie., D = D= 0,
and thab the A has only single cigenvalues. The case of multiple eipenvalues is
dizcussad in [19].

As A only contains values in the main diagonal, each state variable is only
fed hack to itself. Aj.Az..... Ay are the eigenvalue matrix of the system thai,
even with a real matrix A, can appear as complex corjugates. In this cage, the
corresponding state varinbles are also complex, bub their imaginary parts cancel
cach other oul to yield the real output signal y(t).

The parallel form for a system with M inputs and K outputs is shown in
Figare 2.11. Again it is assumed that there is no direct path from input to ontput,
i.e., D= D = 0 and that the system matrix A only has single eigenvalues, Blocks
B und C represent wnltiplication with the corresponding matrices. The block
diagram in Figure 2.10 is included as a special case; the central integrator stage
clearly does not depend on how many inputs and outputs the system has.

What nse is transforming stato-space if all of the resulting structures exhibit the
sarue inpul-ontpul behaviour? The strict equivalence between the different state
madels is unfortizately only valid under ideal conditions. Physical implementa-
tions arc always accompanied by interference ihat can be thought of as additional
signal sources inside the system. For analog elecirical systems this nterference is



2.6. Controllable and Observable Systems a5

IS LR

4

©—s | _ _ o)

Zane

})JV

¥
r
~é~b
b <
" —
gy
-
¥
Ty
=

Figiure 2.00: ‘The parallel form of a system witl one inpul, and one oulput
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Figure 2.11: The parallel form of a system with multiple inputs and outputs
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noise, and for digital cireuits and processors in the fonn of roumding errors. The
effects of this interference on the output signal can be minimised through the ap-
propriate choice of internal states. Additionally. some forms of vealisation require
less hardware or computation thao others.

2.6 Controllable and Observable Systems

The parallel form yields a simple way ol further classifying the propertics of a
systemn with simple eigenvalues. One property is the ability to control a state via
the input and another is that & state can be observed by looking at the output.
For the structures previcusly described, it is possible that the input signal can
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be cancelied ont on its way to a partioalar state. This state is said o be not
controllable. It can equally ocenr that a state-variable is cancelled while on its
Jouwrney to the output. The outpub in this case is then sald to be not pbservable.

Will: the parallel formn there is only one path from the inpui o each state
and also from each state to the cutput (Figure 2.10).  Elmination of more
paths cannot occur. Aceordingly, this applies o systems with wore inputs and
outputs {Figure 2.11}. We can thus write the following definitions of the concepls
contrallable and observable:

Definition 8: Controllable systém

A system 15 std to Te comrollable of after transformation to purallel form. no
clements of the state matre I3 arve zern.

e
Definition 9:  Obscrvable system

A systern s sard Lo be observable of afler transforination to the parallel form.
no elemnents of the state motrix C ure zero.

In contrast, if the element B, in row ., cobuon m of B s zero, the state-
variable 7, from uput #,, is not controllable. FEqgually, the state-variable 2, for
ontput ¥y 18 now observeble if the element Cy, I row k, coluran 1 of C iy sero.

The advantage of this definition of the terms controllable and observable is the
relative ease with whicl i can he verified from the elements of the state nairices.
The disadvantage is that chosen systems must first be transformed to diagonal
form for these properties to be assessed. Therc are other possible methods that
can be emploved to test [or observability and controllabilily, that work directly
with the given (i.e. nol diagonal) state model (e.g. [19. 28]). We now examine the
method given ahove with the help of an example.

Example 2.3

Figure 2.12 shows a block diagram of a second-order system with Iwo inputs
aud one output. At the first glance it secms that all of Lhe slates are connected
to both inputs and the output. Whether any eliminatious exist is not obvious at
this time.

To determine the state matrices we read from Figure 2,12 an equation for eacls
of 3y and % at the inputs of the integralor and an equation for ¢ ai the ontput,
and then write these o the form of {2.33). (2.34):

Z -4 -6 i -2 -3 a1 .
{Zl} B { 3 5}{@}4_[ 2 2][:&:2] (2.51)

I 2 .
y o= {2 3] :_}] | (2.52)
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Figure 2.12: Block diagramn of the systemn in Example 2.3

The matrices A, B, C. D can be imunediately written down. The elgenvaliues aned
epgenvectors can be obtained from the equation (AE — Ajt, = 0.

A=2 Ay= L t;—{}] t—{_i] {2.53)

The eigeivectors may. of course. be scaled by a constani factor. They form the

mndal matrix . )
I s -l 1 .
I’—[ : I]' T ——’:m] _Il. (2.54)

that s al the same time she transformation matrix in parallel form. From | 247}
- (2.50} follows the state representation also given by the block diagraan in Pig-

ure 2,13
[ :1 _ 2 617 4 21 B
BN NI
y = [ —1 1]{”} , (2.56)

Here the element Byp = 0. and it follows thal the second state-variable is not
controllable from the first input. No elements of € are equal 10 7ero so it is a
completely observable system. This is easily confirmed by the block diagram in
Figure 2.13. If we want to control a partientar internal stale of the system in
Figure 2.12 or the equivalent system in Figure 2.13. that is only possible from
input signal wq{t).
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Figure 2.13: PVaratlel form of the systems in Example 2.3

2.7 Summary

At the start of this chapter we aimed o model continuous-time systems in the time
domain. We found Llree types of inodel: differential equations, block diagrarms and
state models. Phe starting point was & system model in which the ‘building blocks’
were represented by a network of ideal components. Although ihis is expressed
in terms of electrical circuils it cau also be applied to other phvsical strucbures,
providing that the local non-linearities of the huilding blocks can be disregarded.

Weo would finally like to combine the results obtained and show the relation-
ships belween them. Figure 2.14 shows the fundamental model forms, networks,
ditferential equations, hlock diagrams and state models.

It is not necessary to axanine in more depth bere the use of notwork analysis
for the modelling of networks through linear differential equations with constant
coeflicients. The point we are making here is that from such differential equations
we have discovered some extremely wseful forms of block disgram. For some of
these the coefficionts can be taken directly {rom the differential equation, thus
the name direct {ormt 18 nsed. We have examined the direct forms 1. 11 and 11T,
of which Il and IIT are canonical forins, Le. they use the minimum number of
integrators {as many as the order of the differential equation). Divect form I
requires lwice as many integrators, and Is therefore not a canenical foym. The
input-output relationship of a system can be modelled by other forms of block
diagram, although the coefficients of these are not hnmoediately interchangeable
with those of the differential equation. 'Fhe paraliel form belongs to this group.
which is notable as iU miakes the relationships between the inpad, intermediate
states and the output particularly clear.
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/' block diagram
: "-._-J_‘_ direct form | ._I: .

differential
‘equation”

direct form 1|

direct form HI

paralig} form

A diagonal matrix

AT Frobenius matrid \
A Frobenius matnx ﬂ

network

" Ohserve how the states are numbered

Figure 2.14; Qvorview of the different model forms of LTT-systems

Closely linked with the block diagrams is the state model. While the original
differential equation is an equation of order N, the state model is a systemn of N
first-order differential equations. The nmumerous coeflicients of these equations can
be eotibined in the correet way in a natrix form to give the so-called state matrix.
Allocation of internal states is equally as arbitrary as with the block diagrams. We
resrict ourselves here to state wodels with a minimal number of states, as these
correspond to block diagrams in canonical form. The elements of the state matricos
cail, in fact, be used directly to forns a corresponding block diagram. Equally, every
state model can be eagily drawn as an equivalent. block diagram. This makes it
clear that there must be some kind of relationhip betwen the congtroction of the
block diagrams and the structure of the state watrices. Accordingly the parsliiel
form corresponds to a state model of diagonal matvix furin A, The property of the
direct, form that wakes its coellicients urterchangeahle with those of the differential
equalion nust therefore be present in the state model as well, The matrix A from
the state model for direct formn 11 is a Frobenius matrix (with suitable numbering of
states). It contains the coeflicients of the differential equation i the bottom row,
while all other matrix elewents are cither 3 or 0. With direct forn U1, the same
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is true for the transposed matrix AT, The elements of the Frobenius matrix can
be taken directly from the coefficients of the differential equation. just as with the
direct fornws. Tor the non-canonical direct form 1 there is of course no applicable
state-space stracture with the minimum number of states,

A state model can, in fact, be derived directly from analysis of a vetwork. This
method produces structures with state-variables that correspond to encrgy stores
in the network. Derivation of block diagrams is not usnally done directly. instead
by way of the differential equation or state-space structure.

Diagonal ot Irobenius matrices are indeed uscful, but are nevertheless only
special forms of the state nodel. Auy number of other state models can be obtained
from the game input-output relationship throngh transformations. As every non-
stugular matrix A with single eigenvalues can be transformed to diagonal form,
an easy rule can be obtained for the transformation of a non-diagonal state model
with matrix Ay into another Hkewise non-dingonal matrix Ay (Figure 2,15), Tt
should be observed in practice that T aud Ty are transformations in the same
diagonal form, with the same mumeration and sealing of states.

LA PY

torm 1
system mairix Ay

form 2
systermn matrix Ag

diagonal form

Figure 2.15: Trausformation between ditferent state-space vepregentations

The model forms in this chapter are only applicable to conlinuous-time LT1-
systoms that can be realised by networks with energy stores, and that can be
charncterised by ordinary differential equations. 1t should be mentioned here that
LT -systems exist. which can only be modelled by partial differential equations
or difference eqnations. A special class of system that is modelled by difference
equations will be dealt with 1n Chapter 14.

2.8 Exercises

Exeorcise 2.1

Show that (2.3) describes an a) time-invariant and b) linear system.

Exercise 3.2
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A system is maodelled by the lincar differential equation

diy L dy d
0588 3% Ly r 0™
e jd.!. ty=et ot

Of what order is this system? Draw block diagrams for this system in both divect
forms I and 1. Which of the two forms is canonical? Justify your answer,
Exercige 2.3

The following block diagram is in direct {orm 1], Glve a linear differential equalion
that corresponds to the same system,

x{r}—»@—» 03}~

- 4h+

¥
!

2 I W vft)

Ld

Fixercise 2.4
a) Praw a block diagram using differentiators. multipliers and adders that cor-
responds fo the following linear differential cquation:
aodl 4 o9+ asy = vk + by
Hint: Follow the constraction stages for a direct [orm © block diagram.

b Redraw the block diagram in canonical form, What condition nust be sat-
{stied for this transformasion?

Exercise 2.5

For the network in Figure 2.9 the components have the following values: Ry =
Ry =100 Ly =2, Ly =05, C =0.0L

a) Thaw a signal flow grapl (=block diagram} using legrators, multipliers
and adders. Select an integrator output for each state in (2.31) and {2.32),

b} Through elimination of states find & diffcvential eguation that models Lhe
fnput-output behaviour of the system,
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¢) Using the linear differential equation cemstruct a block diagram in divect
form 1.

d) Are the block diagrams in a) and/or ¢) canonical?
Exercise 2.6

Transform the following sigual flow graph of a system with one input and two
oubputs into a state-space representation.

1)
g ) }
b ¢
d oS )m f st
f
ot

a) Select snitable state-variables.

b} Represent the derivations of the state-variables as dependent on ouly the non-
derived states and the input signal, and give the state-equation in matrix
form.

¢) Represent both ontputs dependent on the non-derived states and the input
signal, and give the output equation in matriz form.
d) Which special form does the block diagram have if o = 07
&) Under which conditions s the system controllable for d =07
)} Is the systom completely observable? From which of the outputs is it ob-
servable?
Exercige 2.7
A systemt is modelled by the linear differential equation ¥ -+ 4y + Sy = 23+ Tz

a} From the linear differential equation give a corresponding state-space repre-
senlatlon.

LY Transform the state-vector using a suitable matrix T with 2 = T 1z, so
that the system matrix A has a diagonal form. Give the matrix T and the
transformed state equalions.

What are the eigenvalues of the systom matrix? Has the transformed system
the same input- ontput behaviour?
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¢) Ts the systemn controliable, and is it observable?
Exercizse 2.8

a) Give the transformation matrix T and F-! for the translormation of the
states z in (2.36) and (2.37) to the states ¢ in (2.38) and (2.39). so thal
z = T holds.

b) Verity the equations (2.40) - (2.43) using the relationships o, = ap., and
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3 Modelling LTI-Systems in the
Frequency-Domain

In the last chapter we represented signals exclusively in the time-dorain. This
has the advautage that differential cquations can be used to ereate system maodels.
T T-systeins of any size can. in fact, be dealt with using these techiniques, although
calculations become cumbersorue and complicated with higher order differential
equations or with state models of many variables. It is far this roason that we have
not yet derived expressions for the output signal of LTT-systems using diflerential
eguations,

Are there any other tochniques available for ropresenting signals? As an ox-
ample of an acoustic signal we will consider a chord; a combination of different
notes produced by a musical lnstrument. The vibrations can he represented as a
funciion of Lite if a Lime-domain representation is recuuired. but it is obvious that
a chord con also be deseribed by its component notes. The individual noles are
characterised by pitch - ur expressed technically — by their Bequency., as the
number of individual oscillations per unit time,

The characterisation of a signal by the the freguencies of the separate vscilla-
tions has advauntapes, uot only for musicians. but also for technical reasons. Many
systonts are known to produce a sinusoidal ontput sigaal H a siunsoldal input sig-
nal is imtrodueed. The amplitude and phase shift of the cutput sigual may have
changed relative to the input, but the [reqneuney remains the same. We will soon
see that LTT-systems have oxactly this property. In general, the effect on the phase
and amplitude are different for each frequency, and the knowledge of this eflect for
all freguencies presents itsell as a further possiblity for iodelling systems. This
kind of mode! is called a frequency-domaom model and is often stmpler to handie
than a time-domain madel.

The response of an LTT-system to an input signal in the frequency-domnain can
he derived by using the [ollowing procedure.

1. Analysis of a sinusoidal input signal for a range of frequencies.

2. Establishing the systom response to the individual frequencies by recording
the amplitude aud phase difference for each one.

3. Combining the individual parts to give a picture of Lhe cotaplete outpud
signal.
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These points will each be examined in detail in this and the following chap-
tors, bub firstly woe will take a general look at the concept of frequency and the
representation of signals in the [requency-domain, Maihermatical tools for the
transition between the thne-domain and frequency-domain follow in Chapters 4
and § {Laplace Transform) and in Chapter 9 (Fourier Transform).

3.1 Complex Frequencies

3.1.1 What is a Complex Frequency?

The traditional definition of frequency is derived [rom real values of a sinusoidal
signal 2(t). Such a signal is characterised by its amplitude X and the number
of oscillations per unit time f, and the zero crossing relative to time £ = 0. The
frequency f is a real number. Together with the real phase ¢ it describes exactly
the pusition of all zero crossings:

x(t) = X sin(2n ft + ). (3.1}

‘he extension of the concept of frequency to a complex value leads to a complex
exxponential signal of the form

w(t) = Xe*t . (3.2)

In contrast to (3.1) only the time ¢ is real; the amplitude X and the frequency
5 = o - jw are complex. Figure 3.1 shows an example of a complex exponential
signal with X = 1+ 7 and 5 = —0.5 + j5. It is defined for all points in timce,
bul is only shown here for + > 0, Tor ¢ = 0. z(t) takes the value of the complex
amplitude X for t > ) it is defined by the real (o) and imaginary (w) parts of .
‘The real part is known as the modalas of @w(t),

()] = | X e, (3.3)

while the imaginary part corrcsponds lo the angular frequency w = 2nf, and
indicates how [ast the complex signal (Figure 3.1) orbits the time axis. The re-
lationship with real cscillations can be seen by separating the real and imaginary
parts of w(f), as in Figure 3.2,

3.1.2 Complex Frequency: Example Signals

As examples of the use of complex frequencics we have expressed some real signals
by complex exponential function (Table 3.1). For X € R and for real values of
s, #{t) is of course real. In the simplest case s = and X = 1, sox{(f) =1, and
has become o constant. A real exponential signal is obtaitied for other real values
of s, for example, 2(t) = e for & = ~3. Sinusoidal signals with real values can
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z{t) = Xe* with X =1+3j, s=-05+45

It {x(t)}

.

o

Figure 3.2: Real and imaginary parts of the signal in Figure 3.1

be represented by superimposing two complex exponential fonctions with purely
imaginary frequencies s == jw and s = —jw. Superimposing exponential functions
with o $ 0 leads to decaying or growing sinusoidal oscillations,
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Table 3.1: Examples of some real signals

Signal Frequency
Clonstant aft) = 1 s w= 0
Real
exponential sig- | w(t) = s = =3
nal
" . () = sindhl
Sinusoidal wit) 11“ ¢ = 150
oscillation S e L soE
2
. () = o % sin 50t
Decaying .y
oscillation = ‘)i[&'(‘"‘24'503’-”_p(—z—ﬁﬂ,}']fl § = —2450j
=7

3.1.3 The Complex Frequency Plane

The advantage of complex frequency is that many kinds of signal can be expressed
by o single complex frocquency parameter. To give an overview, the dilferent forms
of complex exponential function can be assigned the corresponding values in a
Ganssian number plane. It is called the compler frequency plane or s-plane. Fig-
ure 3.3 shows the complex oxponeniial fimetions for dillerent locations in the
complex frequency plane. Moving away [rom the real axis makes the oscillation
faster. Looking iu the direction of the time axis, in the upper half-plane where w
is positive, the complex oscillations turm clockwise, and in the lower half they tum
anticlockwise. On the real axis the signal does not oscillate. Signal forms in the
right half of the plane grow - faster if they are further away from the imaginary
axis - and signal forms i the left half of the plane decay.

3.2 Eigenfunctions

3.2.1 What are Eigenfunctions?

In general. theve is no great similarity hetween the time behaviour of a system’s
input and outpnt signals. There are systems. however, that allow certain inpul
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T Im{sl=w

.0

faster
osillation

N faster 1 taster
d T rowi Retsi=a
\_ ecayan?m# growing . {5}

faster
oscillation

‘ B'\f\fv 1 6{?66 .

FFigure 3.3: An ilustration of the complex frequency plane

signals Lo pass through unchanged, for example, electrical networks made up only
of resistances. capacitors and inductors. Their response to a sinnscidal signal is
wsually (for linear componenis) another sinusoidal signal, with only the amplitide
and phase being different. Sine and cosine functions can be put together Gom
exponential {unctions (see Pigures 3.1 and 3.2), and then the amplitude and phase
changes can be expressed by a single factor, the complex amplitude. 'Lhe output
signal can then be obtained from the input signal by nmitiplication with a complex
factor,

A similar plenomenon is known from linear algebra: for eertain vectors x. the
prodact of x with a mairiz A eguals a muoltiple of the veetor x: Ax = Ax. Then
X is called eigenvector and X is called eigenvalue. 'We will use these potions also
for signals which pass through a system without changing their shape.

I s .
Definition 10: Eigenfunction

A sgnal e(t) which when mput nlo 6 systemn. produces al the oufpul the re-
sponse Yy = Aeld) wdh the complen constant X, s called the eigenfunction of
thes system.
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Figure 3.4 shows the close relationship botween tlie luput and output signal.

i system e

1) A-e(®)

Figure 3.4: Driving a system with eigenlunction et}

3.2.2 Eigenfunctions of LTI-Systems

As simusoidal signals pass through linear networks without changing form, and
can also be represented by complex exponential functions, we pucss that these
expouential functions are cigenfunciions of 1/7'-systems. We have to show that
y{1) = A(t). To prove our themry. we start with an input signal of the form
rit) = . and look for the eorresponding system response y(f), that we can write
in a general form as a function of the imput signal:

y(t) = S{a()} . (3.4}

In the following we use exclusively the stated properties of LTT-systoms, time-
irvariance and linearity. We start with the response to an input signal shifted in
time.

ot — ) = " (3.5)

and because of the thne-invariance we obtain
y(t - ) = S{m{t — )} = 5{e>" T} = §{e™ T} (3.6)

The factor e~ “does not depend on time. Because of the linearity it follows {urther
that
yit — o) = S{e  Ce "} = e FUSLe™) = ¢ y(1) (3.7
Now atthough we do not have y(t) itself, we have a difference equation for y{f)
which is
ylt =~ o) =" Fylh) . (3.8)
This can be fulfilled by
y(t) == Ae®™ (3.9)

which can be verified by substituting into (3.8). From Deflnition 10, 2(t) = ¢ is
an eigenfunction of the LTI-svstem described by 5.

The constant A identifies (he behaviour of S, As linearity and time-invariance
were the only pre-conditions, we cannot say anything further about A, In general
A depends on the complex frequency 8. We write therefore X —= H () and call
F (4) the system function or bransfer funchien, as it deseribes the system and its
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transfer properties from the input to the output. The connection with the system
model in the time-doraain will be covered in later sections. Figure 3.5 shows the
relationship between eigenfunctions and system functions for LTI-systems.

The scheme given in Figure 3.5 has to be used with care. Foy many [11-
systems, an aualytically determined transfer function H(s) is only valid within
a certain region of the complex plane, the so-called region of convergence, Only
inside this region. a complex exponential oscillation at the inpit leads to a finite
signal at the output. As an example. consider an integrator with the transfer
fuuction H(s) = 1. The response of the integrator to the input signal 2(t) = e’ is

i
ouly of finite amplitude, as long as Re{s} > 0. The response () = [ ¢*® dz does
e
not converge for Refs} < 0. Usually, the indication of the region of convergence
for a transfer function is omitted without runnping into problems. We will discuss
this topic further in Chapter 8.4.4.

LTi-

rr—— | | et

eft SYStem H(S) est

Figure 3.5 Eigenfunetion and transfer function of an LT-systein

Oge more warning: the one-sided exponential function

. S
x(t) = { 0 otherwise

it in general not an eigenfunciion of an 1T -system!

3.2.3 Example: RLC Network

As an example for analysis using complex {requencies we consider the parallel
roesonant cireuit in Figure 3.6

{ty R=1kQ

u(t) l
C=100 ;eFT 1=100 mH

-

Figure 3.6: Parallel resonani RLC network
The input signal is of the form

u{t) = upe™! costwel + wo) {3103



02 3. Modelling LT}-Systems in the Frequency-Domain

To determine the expression for the curvent 4(f). first w(f)} is rewritten as two
corplex exponential functions:

u{t) = wpe™" 5 [e““’""‘*‘”‘-‘-’ +e -”“ut‘*'@nl] = Uttt 4 e (3.1

with
, o M . _ o ao
) =" = ST s = s =0 v Juw (3.12)

i

We ean find the expression for current oft) with the loBowing considerations.
s The inpub signal is a2 sum of two exponential functions.

» The electrical network can be modelled by a linear differential equation with
constant coefficients. and is therefore an LTT-system. We know that LTI
systems liave complex exponential funetions as eigenfunerions.

& The oulput signal may be then be written as the sum of two exponential
functions,

For the curvent we thus make the following starting point:
ity = Le! + Lie'?t . (3.13)

The constants 1) and T are unknown and must be determined from the model of
the network., We put u(f) and i(¢) into the differential equation

ofut) d?i(t)
de? de?

that can be immediately written down from the circuit in Figare 3.6. The following
equations are then obtained

u{t) + LC

L ditt)
= Ri(t) + L—" + LOR—55 (3.14)

et + S2LCU e = RIye™' + Lsy[e™ + LORst e (3.15)
Uge™? + S2LCTRe = RIe® 4 Lsgloe™ + LCRsLe™ . (3.16)

As Uy and Us are known from (3.12), we can solve (3.15) and (3,16} for I; and Iy:

1+ 81LC
R 317
h % R+ 1L +:2LCR (3.17)

1+ s3LC
L o= UzR+s-gL+s-32LC‘R

As with (3.12) s; = so*, it {ollows from (3.17) and {3.18) that I = fy*. 'The
ohjective is then obtained with (3.13)

(3.18)

?(f) Il?ﬁt +1 * oS Yt QRE{Ilfmt} (319)
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As an example. we input the component values in Figure 3.6

. o1 -
gy = 20mV.  wyu=300s"'. og=—1s"'. pp=— =078

e |

into {3.17) amd obtain .
Iy = 9.75puA /49

Together with (3.19). the result for 2(f) is
A8 = 19504 ¢~ cos(300s 7Vt + 0.49) .

The following observations taken {rom Lhis shimple example are important for the
general procedure.

# 1o obtain the desired output value we only have to determuine the factors of
the eigenfunctions (here i and £}

# These factors can be expressed as algebraic equations (here (3.17)
and (3.18)}.

¢ The differential equation that models the network (here (3.11) ) does not
have to be soived as a whole. Forming the derivative or integral for each
individual inductance or capacitanee is suflicient. Due to the exponential
form of ihe eigenfunction each derivation or integration resulis simply in a
multiplication or division by the complex freguency s.

s This procedure corresponds Lo steady-state sinusoidal analysis. Here, how-
ever, exponentially decaying or rising oscillations are alse inclnded.

The convergence of the system response has uot been investigated in this ex-
ample. but was simply implicitly assumed. We will see in an exercise ab the end
of Chapter & that the system response only converges for o known range of values
of ay.

3.2.4 Impedance

From the example of the parallel resonant circvit we made the observation that
the treatment ol the equations for the capacitances and inductances can be bro-
ken down to multiplication or division by the complex {requency s. Such networks
can be modelled withoit the use of differential equations or integrals. i every
component is given a complex registance vhai is dependent on the complex fro-
quency. This complex resistance s called mmpedance, IF the voltage and current
arc in exponential form for the components. Ohm's law can be used o define the
relabionship between themo

U(s) = Z(s) - I(5) (3.20)
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Table 3.2: hupedance of important coniponcits

compeonent impedance

R
resistance e SN S R

C‘
capacitance o——]}—o %

L
inductivity oo sl

with the impedance Z{s}. This relationship is called Ohm’s law in impedance fort.
Table 3.2 shows the impedance functions for the most important components.

Nelworks that consist of these components can be modelled as an impedance.
Taking the equations {3.15) and (3.16) for the parallel resonant circuit we compare
with (3.20), and have:

Ue = Z(s) - 1™ (3.21)

where
$L- 2+ _ R+sL+s*LCR
R P 176

From section 3.2.2 it [ollows that the system function of the parallel resonant
circuit for the voltage as input signal and current as output signal is:

Zis)= R+

L+ s°LC

1
Hs) = 205 = ReL s 2LCR -

(3.23)

'Fhe output value of the parallel vesonant circuit can also be expressed in a general
forn:
i(t) = H{s ) Ue™ 4 H{sg)Upe™* . (3.24)

The inpedance model is only applicable to linear tine-invariant circoits (L11-
systems), as only they have exponential functions as cigenfunctions.
3.2.5 Normalisation

A general problem with derivation of the system response and the specification of
the system function is the corvect consideration: of physical units of measurement.
There are two fundamental possiblitics:

» consistent use of units
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« normalisation.

The advantage of consislent use of units is that ali values have a physical
weaning amxd that errors in caleulation can be detected due Lo inconsistency of
units. Unfortunately this method often leads to unwieldy expressions. We will
demonstrate consistency of units with the following simiple example.

Example 3.1
The system function of the network shown in Figure 3.7 will be derived. The
voltage wy(¢) Is the inpul signal, ugf({) the output signal.

C = 10 pF
n

e 1l 3 &

i) = e{r) IV 1 R=10 42 [ ualt) =7

Figare 3.7: RC cirenit

Using the complex impedances of the components

by R =~ with £ = RC = 0.1s (3.25)
O gy L se+l
s

H{s)

is obtained. The complex frequency variable s has dimension 1/unit time, and the
timme constant r = R the dimension unit time.

The advantage of normalisation is simplicity of expressions, especially when
mumerical values are given. Admittedly, the physical meaning of the valnes is
no longer immediately apparent, and errors in calculation cannot be found by
considering the physical meaning. As dealing with normalised values and their
correct interpretation requives some practice, we will examine the relevant concepts
here in some detail and fivally demostrate them in an example.

Two steps are required to convert a network to normalised values.

+ Amplitude normalisation

With amplitude normalisation. all voltages are expressed as dintensionless
multiples of a reference voltage, and all currents as a mmltiple of a reference
current. Amplitude normalisation causes a change in the vertical axis.
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» Time norinalisation

With tiine normalisation, all specified times are expressed as multiples of a
refercnce time. Time normalisation causes a change in the time axis.

Both munplitnde normalisation for voitage and current and time normalisation
induce a corresponding component normalisation, which expresses all component,
values as a multiple of the corresponding reference value.

The simplest possibility for the choice of reference voltage, reference enrrent
and reference time is Lhe use of the corresponding SI units, 1V, 1A and 1s. From
these, reference values for the components are immediately obtained, also in SI
units, i.c. 18 for resistances, 1F for capacitances and 1H for inductances, Nor-
malisation can thus be carried out so thai all values are calenlated using S1 units.
Simply omitting these units gives a normalised representation which can be con-
verted back to a physical representation by adding ST unils. However, values for
capacilies in 1F are very unwieldy, as well as time constants in seconds when
dealing with fast microelectronic components.

We therefore diseuss in detail soplitude normalisation. time nonnalisation, and
component normalisation for general reference values. Irom now on, we denote
normalised quantities by a tilde ( 7). Since we wani to represent components by
impedances, the following considerations are based on complex frequencies.

We begin with amplitude normalisalion and mark the reference voltage with
Up and the reference current with fy. Both are dimensionless, time-independent
variables. For current and voltage in normalised variables. it follows that

- U = e
U= Uo I= T (3.26)
For time normalisation we relate all times ¢ to a reference time ¢y and obtain the

dimensionless normalised time ¢ ;
e o,

ly

When we are working in the frequency domain, we express the complex frequency
likewise with the reference time fn. We have to make sure that the argument in

the exponential function remains dimensionless. We obtain from

(3.27)

B—St — e—S't{] . t/tu — E'.'—gf (328)
the normalised cornplex fequency
5 = styp. {3.29}

The transition from the amplitude and time normalisation to component nor-
malisation is carried out using (3.20). First we express T/ (s) and I(s) in amplitude
and time normalised values with (3.26) and (3.29}):

U(&/t . N

Uis = =g ( To

(3.30)
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If we use the normalised complex frequency variable § in {3,20) and substitute
into (3.30). it [ollows that {3.20} is the corresponding relationship for the nor-
malised value of impedance

U8 = Z{5)1(5). (3.31)

The normalised impedance Z(&) eorresponding to (3.30) follows by normalisation
of the impedance Z(s} with respect Lo the reference resistance Ry

- Z{&/t0)

Soay Lo
45y = —p =

Ry =—. {3.32)
i U]

The reference resistance My is thus clearly set by the amplitude normalised ret-

erence vollage Uy and reference currend £y, The norualiged impedances of the

froquently occarring components fromn Table 3.2 are:

R .
?0 == I resislance
VACH fo L Wpacitang (3.33)
8= - —= CILDACILANCE NI
SRC s
_ L I
i = 4L  induetance
Rty

The reference resistance Ry and the reference time 1 = ¢ can be combined to give
u reference capacitance and a reference inductance

oo

0= o) . Lo = Rty . (_:5,34)

and the dimensionless nornmalised component values can then be obtained
__ R (_"' (Tf ’.J
Ry Co Ly

pea

i

(3.35)

They arc normalised to the reference valnes for voltage, current and time chosen
at the ontser. Conversl, it is also possible to use the three reference values {or
resistance, capacitance and induetance as a starting point. Then the inverse route
has to be followed to interpret the resulls in the correct dimensions for voltage.
current and {ime. The choice of the refercnce values yields handy values. when
the reference tire is in the same order as the typical thme constants of the sys-
tem. Component reforence values are chiosen such that manageable values resir.
With some practice, normalisation can he significantly shorter than the detailed
representation shown above.

We show the procedure with the same simple network from Example 3.1 that
we lrave already analysed wilh dimensional values.
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Example 3.2

Tu derive the system fapction of the network in Figure 3.7, we select. reference
values for current, voltage and time and caleulate from these the reference values
of the components. With

Ug = 1V, I(] = lmA , to = 1s

we ohtain

Rn = le \ GU = ].II]_F

for the reference values of the components and from those. the normalised compo-
nents

- - 1
=10, J= e
=10 ¢ 100
The system function iy then given by
(3 R 10

H(3) =

ZYCTr SR NRUNE (A () (3.36)
s 5
Here all guantities are dimensionless and the result of further caleulation can be
interpreted respeciively as normalisation into volts, milliamperes and seconds.
Usually no separate notation for the normalised quantities (Lhe Lilde in onr
case) iz used. The component values are simply given without dimensions, This
representation of the dimensiouless network is shown in Tiguare 3.8, From now on,
we use hotlr variants for the analysis of systems without denoting normalised and
unnormalised guantities ditferently.

C =001
o I} » -0
i)y = £(8) R =10 wlty="7

[’

1

Figure 3.8: Normalised RC circuit
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3.3 Exercises

Exercise 3.1

Recognise the frequencins of the following signals in the complex frequency plane.

za(8) = € (1 +sinbt)
ap(t) = A coswgt + B cos 2wyt
r ) = sinfw,l + @)

Exercise 3.2

Could the [ollowing systems be LTl-systems?

a} S o B S—
stnfet) 5cosfwt + 20°%)
b) —_— ???
4 sin(10t) cos(5t)
¢) —_— ???
o S %f‘ - 2L
) SN B 1 & S N—
e 2 —5 cos(2¢)
) p——— S S
-5 cos(2¢) e I
Exercise 3.3
The following simple network will be analysed:
L=12H C=}F

(1) l R=1Q ==l ()

o ¢
wi(t) = e PP cos( 4t 1/8) 1V

a) Normalige the components and the response to LA, 1V and 1s,

{7 (8 )

b) Give ihe transfor function H{s)} = 2 )
1l 8

by applying Ohm’s law in

impedance form.
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¢) Represent u{f) as a sum of weighted exponential functions and calculate
the gysiewn reaction us(f) to the exponential excilation,

d} Express ua(f) using physical dimensions,
Exercise 3.4

Show that

st
. & t >0
aft) = -
o(t) { 0 otherwise

¢
is not an eigenfunction of the LT -syster yt) = / s(r)de.

—



4 Laplace Transform

4.1 The Eigenfunction Formulation

T Chapter 3 we saw that for input signals z{f) = ¢, that are eigenfunctions of
a linear time-invariant system (LTT-systom). it is relatively easy to calenlate the
corresponding ontput signals. Unfortunately. real world signaly (see Chapter 1),
are not eigenfunctions of LTT-systems. There is a way around this. however, where
any sigual z(t) is repregented by superimposed eigenfunctions € with different
frequencies. The response of an ETT-system Lo the individual eigenfunclions can
he easily determined and then with the superposition property, the regponse to
the signal w(t) can be put together.

The idea of analysing a signal as its individual components is already lamil-
iar from the Fourier series: periodic signals can be represented as a combinaiion
of harmonic oscillations. Their frequencies must be integer multiples of the Tun-
damental frequency thai represents the periodic signal, and the combination of
these frequency components is achieved by surmmation. We are not restricted to
poriodic signals, so we st permit analysis in eigenfunctions with any frequency.
The superposition then consists of an integral over the possible frequencies. This
idea can be put into uge in various different ways and it leads to the Laplace and
Fourler fransforms.

I this chapter we will digcuss the Laplace transform, starting with the defini-
tious of the unilateral and bilateral Laplace transforms, and then considering some
examples that lead to some general rules for the region of convergence. Finally we
will discuss some boportani laws and properties.

4.2 Definition of the Laplace Transform

In order to be able to represent a signal :w(2) as a superposition of individual parts,
two mathematical Lools are required for:

s the decomposition of x(#) into parts,
s the superposition of the parts of the complese signal «{#).

Matheratical [ormulation of the decompoesiton leads to the definition of the
Laplace trans{ornn
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Definition 1i: Laplace transform

The Luplace transform of o funchon x(t),t € R 15

Li{z(t)} = X(s) = / a(tye™ s dt (4.1}

Jor the the values s € ROC CC, for which the wmproper miegral erists.

The cowplex function X(5) is called the Laploce fransform of a:(t). Staling the
colvergence is not becessary as whatever form the function z($) has. the integral
only contverges for a bounaded region of the complex s-plane. This region is calied
the reqon of convergence (or ROCY. We deal with detevmining the region of con-
vergence with some examples, when we are more comlortable wilh the Laplace
transform.

In order to recoustruct x{t} from the individual terms, the reverse operation
w0 the Laplace trans{orm must be used. This is the inverse Laplace transform:

L oo
w{t) = L7HX(s)} = iy ] X(s)eMds . {4.2)

2?1-} T—gon

Fhe real number o determines the location of the path of integration within the
comples plane. It must lie within the region of convergence, but its exact location
and form does not influence the residt. An example is given in Figure 4.1, The
region of convergence in this case consists of a vertical stripe in the complex plane,
aud the path of integration {dotted line} runs vertically from top to botton.

g
b
[

-

Rer-:}

TUTT DT
=
SN

Figure 4.1; Dlustration of the Riemann sum

The Laplace transform represents the real or complex function of time z(2) by a
corplex function X (s) that is defined in the coniplex frequency plage. Important
functions encountered in practice only have one transforn, so X {s} fully describes
z(£) (see Seclion 1.6).
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‘I'he pairing of a function of time x(¢) and its Laplace transform X (s) = L{x(t}}
can also be identified by the symbol o-—e. The filled cirele denotes the frequency-
downnin quantity;

z{t)o—e X(s) . {4.3)

The nverse Laplace transform really does represent a function of time as an
infinite number of superimaposed exponential funetions, and this can be mace clear
by the integral {1.2), sketched in Figure 4.1, and expressed as a Riemann sun:

1 o oG :
el X{s)e™ds
277:1" F - i

1 : snt CXE LSl K
= 5 &Iu}jn {.+ X{s0)e™" + X{s)e™ 4+ X(s2)e™" + ..} As . (44)

it

x(t)

Every tevmn in (4.4) is a complex exponential Funetion, weighted with a complex
factor.
4.3 Unilateral and Bilateral Laplace Transforms

The Laplace transform has more Lthan one version and, as well as Definition 11,
the following unifateral Laplace transform

Cila(f)} = X{s) = [ﬂx;r{t)r?_“dt, (4.9)

in which the domain of integration only contains the positive values of the time
axis, is often used. Tt assmmes that the system is zero for { < 0 and is thevefore
well suited to cansal systems and problems with initial conditions. Modelling of a
left shift, though, is now problematic.

To distinguish between the two types of transform, the transform in Defini-
tion 11 and equation (4.1} is called the bileleraf Laplace transform. It fransforms
{{or { € R und models a left shift of the signal in a simple way. If a causal sigual
or system is multiplied by the step function

Vofort =0
o1 = 6
:( ) {  otherwise (4.6)

then its value is zero for £ < 0, and it can be dealt with by the bilateral Laplace
transform as with the unilateral Laplace transform. Figure 4.2 shows the step
function i the time-domain, Use of the step function will be sxplained in the
following exanuples.
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1i (1)

1

t
IFigure 4.2: Time behaviour of the step function

4.4 Examples of Laplace Transforms

The [cHowing examples should clarify the connection between the unilateral and
hilateral Laplace trausform and the use of the step function. The region of con-
vergence will also be delerinined.

Example 4.1

We begin with a decayiug exponential function that disappears for time ¢ < 0.
It could, for example, be the impulse response of an RO circnit. Le. a causal
systom. The constant o is real:

w(t) = e %e(t) .

{ts Laplace transform X{s) = L{x(4)} is required. We obtain through the Laplace
integral (4.1%:

el i
X{s) = j e Ma(Be dt = / g ~tetaktyy
- 41
f==0 .
-1 . F . 1
- { e—l\.‘»'rﬂ,”.} — 1 | m PR AL L 1] = e
540 pe=) 54+ ibee s-+a

We consider the effect of the step funetion in the bilateral Laplace transforic
because we evaluate only positive values of time # in the integral, that is, where
the step function has the value 1. This has the same meaning as the unilateral
Laplace transforin of e=**. The lunit value of the exponential function for £ — o
only exists if the real part of the exponential function is negative, Le. Lor the values
of & where Re{s} » - a. For all other values of & the integral does not converge,
and it is said that the Laplace transform does not exist. Concisely put:

\ 1 : '
ﬁ{a(“(?—at} — 5 — : RQ{‘!} el L (4?]

The transform clearly has a pole at s = —a (see Section 4.5.2). The region of
convergence in the s-plane is represented in Figure 4.3, It contains all values of
s for which the real part is greater than —a. We can also express this i another
way: a vertical Hne tlwough the pole divides the complex plane into two halves.
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Im{s}

AN S
no % L £{x(5)} converges

z‘f,; e Ey s
convergence ﬁ'//'f// 7% L /ﬁrﬁ{f%

.

,&/ /Z///? x;}f//éi’f i

Figure 4.3; Representation of the repion of convergence from Example 4.1

The Laplace transform exists for all values of s that are in the right hand side,
For ¢ = () we obtain an important special case: The Laplace transform of the step
Tunction £{¢):

Listtit = -1 Refs} >0. (4.8)
[

Example 4.2

In the second example we consider an exponential function that disappears for
£l

a(t) = -—(_‘_“'trf(_—lf) .

To detennine the Laplace transtorn we procecd cxactly as in the first example:

X(s) = .._] e M —tie Tt

e
0 . 1 . |

— _f E..,—[,-.-I‘-a)tdt - 1 - Hm e—[.s+a,lf] —
e s4+a Lo 8+ 0

and obtain
) i )
Llmg{—t)e M) = . Rels} < —a. 1.

fme(=t)e = = Refs) < (49)

The Laplace transform X (s) has the same form here as in Example 4.1 and so
hkewise has o pole at. —a. The difference lies in the vegion of convergence, which
here iv the half of the plane ou the loft side of the vertical line, It is clear that
different. time functions can have the sane Laplace transform. so to invert the
transform, the region of convergence must be the deciding factor between the
different possibilitics.
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.. 1

L{x(t)} converges no
- A convergence

%—ﬁ Res}

Figurve 4.4: Tustration of the region of convergence from Example 4.2

Example 4.3
In this example, we forn a right-sided signal from two exponential terms from
Exampie 4.1:
@ty = (D™ + e
To determine the Laplace transform, we split »(2) into two parts and interpret for
each part the result of Example 4.1-

- ) ) N 3
X(s) -"--/ le~te() + e Me(t)]e*dt = / e e + / e e dt
- it WS
_ 1 : 1
s+l i s+ 27
The Laplace transform X(s) has two poles at s = —1 and s = ~2. As X(s) only

exists i both parts converge, the pole with the Targest real part deternnines the
region of convergence. Put in other words: (e region of convergence lies to the
right of a vertical line through the rightmost pole. Through combination of the
two terms, it ¢an be scen that X {s) has a zero at s = —1.5, but this has no effect
on the region ol convergence:

1 2¢ + 3
LA S A S SN (4.10)

X(s) = = - ;
(s) s+1 542 s2483s54+2°

Example 4.4

Now we consider a signal that is not equal to zero for —oc < < o¢ and iy
formed from a right-sided sigual for £ > 0 as in Example 4.1, and a lefi-sided sighal
for + < 0, as in Fxample 4.2:

xft) = e(t)e ™ —a(—t)e ™" .
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Figure 4.5 Mustration of the region of convergence in Example 4.3

We again express the Laplace transform as s component parts and then have
the same form. and so the same poles as in Example 4.3, The region of conver-
gence is made up of the area in the s-plane In which both parts converge, i.e. in
the interseetion of the two regions of convergence of the exponential parts from
Example 4.1 and Example 4.2. The [act that both regions of convergence of the
individnal terms overlap, means that the the region of convergence lies in the strip
between the two poles;

1 1 28 - 3

X(s) = + = ;
(%) 5§42 s-1 e +3s542

—2 < Re{s} < -1. (4.11)

& Im{s)

- pole: s =1, 5= -2

Re {?}

zere

L\QL‘Q‘\\@-:

Figure 4.6: Hustration of the region of convergence in Example 4.4

Example 4.5

The signal in this example is siroilar vo that in Example 4.4, but the values of
the exponents for the left and right sides have been exchanged:

a(f) =c(t)e™" —g(—t)e %
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Each part converges seperalely; the positive timie part for Re{s} > —1. and the
negalive timne part for Re{s} < ~2. In comparison with Examples 4.1 and 4.2,
we sce that in this case the regions of convergence do not overlap, This gignal
therefore has no Laplace transform.

4.5 Region of Convergence of the Laplace Trans-
form

The Exampleg 4.1-4.5 are concerned with signals of which the Laplace transform ig
characterised by a fow simple poles and zeros. Finding the regions of convergence
was relatively simple, The Laplace transform can also characterise, however, more
complicated signals and systems. and leads fo expressions that can no longer be
written as rational functions of s.

That is the ease, for example, for all locally distributed systems like electrical
cireuits {see [19!). We must thercfore make the results so far obtained even more
general, First of all we will eonsider the convergence with indefinite integrals.
The region of convergence Is especially important. hecanse cdifferent signals can
have the same Laplace transform and are only distinguished by their regions of
convergence {see Examples 4.4 and 4.2). Without giving the region of convergence.
a unigue inverse fransforn is not possible in general. Further on we will consider
general singularities of funciions of complex variahles.

4.5.1 Indefinite Integrals

First of all we recall the meaning of integrals with infinite limils of integration
in {4.1) and (4.5). Unlike an ntegral with finite Ynits ¢ and a < oc. an integral
betwern 0 and o0 13 defined by the limil

[. [1dt = lim / [Jdt (4.12)
Jn 4= Jy

1t is also called an mdefingte integral. Correspondingly. the integral of the bilateral
Laplace transform is given by two lhniis

B ) &
.C{:r{t)}:[ a{t)e " di = 4lim / x(_t')c'Sitlt+(jill}_/ w(t)e dE. (4.13)

- AR g4 4B

Here. each Hmit must converge individually {in previous exammples B was always
zero). The region of convergence of the bilateral Laplace transform therefore
consists of the imtersection between the two regions of convergence for the two
limits,
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4.5.2 Singularities

The Laplace transforms from the previous examples are lunctions of the complex
variable s, For corlain values of s they were singular (e.g. for s = —a in (4.7)).
To classify suel situations in complex s-plane we must recall some concepts from
function Lheory.
It for a complex function X (s}, s €€ at sq. the boundary value
}((SL‘] + LX‘)} — ){.(Sn) B

i = X 4.14
Aljalﬂu s X (s) { )

exists and takes the same value X/(sp} regardless of the path sy is reached by, the
function X (s} at the point 3q i3 then called an analyire, regular or holomorplace
[unction. X (s) at the point sg is said to be complex differentiable and X' (sy) is the
first devivativc of X(s). 1f the first derivative exisis, thent the higher derivatives also
exist al Lhis point. Points for which X (s} Is not analytic arve called singularrizes,

Functions X {&) that arc analytic in the entire complex s-plane apact from some
isolated points are often obtained as Laplace transforms. The local behaviour at
any isolated point s5. which has a surronnding X(s) that is analytic. can be
clagsitied by the Laurent cxpansion of X(s) with sy

P

X(sp= 3 tals —s0)" (+.15)

=
The following may oceur:

¢ The Laurent expansion does nol contain any elements with negative powers
{a, = 0 for n < 0, Taylor series). X(s) is then analytic al the point s,

e The Laurent expansion contains a Anite number M elements wilh negative
powers (@, =0 tor i< —M < 0} X (s) is then not analytic at the poind sq.
The singnlarity is then called a pole of prder M.

s The Lanrent expansion containg an infinite number of elements with negative
powers, X({s) is then not anabytic. The singularity is called an essentral
sungularty.

This classification is of little use if the Laurent serics of X{s] is not kuown. The
Laurent expansion of functions that occur when LTT-systems are described by the
Laplace translorm are, however. usually simple to determine. As an example, we
will consider the Laplace fransform from Example 4.4.

Example 4.6
To deterivine how the function X (s) from {(4.11) behaves atb the point s = =1,
we re-write the lrst term and expand it into a geometric series

|

1 | o : .
Eﬁzlm[mtﬁﬁ)—l:z[_m“”' s+1<t. {4.16)

=}
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The condition fs - 1| < 1 for the convergence of the geometrie series is certain to
be fulfilled for any small arca around s = —1. With (4.16) the Lanren expansion
of X{s) from (4.11) is vielded:

. . - (—1)* n>0
— — F T =3 — | —
X(s) st Z an(s+ 1Y with a, = 1 n=—1
[ty 0 <t =1,
(4.17)

We have found that ¢, = 0 for n < -1, and therefore X (s) has a first-order pole
{single pole) at 8 = —1.

In the context of analysing LTT-systemns that hiave a finite munber of cuergy
stores, rational fraction Laplace transformos often occur. For g numeralor polyni-
mial of order A7 they can have up to Af poles. but no essential singuaritics,

4.5.3 Properties of the Laplace Transform’s Region of Con-
vergence

The properties that we observed in the examples from Section 4.4 can be gen-
eralised for more complicated signals. We will List the series of properties that
are obtained. They are each concerned with a time sipnal »{8) and its Laplace
transtorm X (s) (4.17.

1. The region of convergence is a strip parallel to the imaginary axis
in the s-plane,

As only the real part of ¢ is responsible for the convergence of the Laplace
transtorny, all points of Lhe s-plane with the samne real part have the same
CONVOTERNCE properties.

2. If »{t) is a right-sided signal, then the region of convergence Hes to
the right of a line through the rightiost singularity.

In Example 4.3 we saw that for a vight-sided signal with two singularities, the
singularity with the greatesi real part detenmines the region of convergence.
The same is true for right-sided signals with any number of singularities.

3. If x(t) is a left-sided signal, the region of convergence lies to the
left of a line thwough the leftmost singularity.

Comparing Examples 4.1 and 4.2 shows that for righit-sided and left-sided
signals, the region of convergence lies to the right or left of the singnlarities
respectively. For multiple singwlarities. it is again the singularity with the
ereatesi real part that defines the region of convergence.
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4.

‘When (1) is bilatcral — the sum of a right-sided and left-sided
signal ~ the region of convergence is a strip between two singulari-
tics, as long as the right-sided and left-sided regions of convergence
overlap.

The Laplace transform of a bilateral signal can (see (4.13)) be put together
from its right-sided and left-sided components. The properties we have just
discussed apply to the individual regions of convergence, and the complete
region of convergence is their intersection. ‘This interseciion is a strip that
lies to Lhe left of the rightmost singularity and to (he right of the leftmost
singularity, The intersection is empty unless all of the singularities in the
right-sided component lie to the left of the singularities in the lefi-sided
component.

In order to [uily understand this, we re-examine Examples 4.4 and 4.5, In
Fxample 4.4, the pole of the right-sided component (s = ~2) Yes vo the left of
the pole of the left-sided component (s = —1), and the region of convergance
is the strip between these poles. In Example 4.5, the pole of the right-sided
component (¢ = --1) lies to the right of the pole of the left-sided component
(s = ~2) and the intersection is crupty. so in this case the integral {4.13)
does not converge,

The region of convergence does not contain any singularities.

Because of the properties we have discussed. it should be clear that the
gingularities of the Laplace fransform either lie to the left of the region
of convergence {singularifies of the right-sided component) or to the right
(singularities of the left-sided component). In the region of convergence
itaelf, there cannot be any singularities.

If z(t) has a finite duration and it £{z({{)} converges for at least one
value of s, then the region of convergence is the entire s-plane.

1f %(1) has finite duration. L.e.. when x{f) is only non-zero for A < ¢t < B. then
we can represent. its Laplace transform by only the first integral on the right-
hand side, and we dao not need to find auy limits, Al of the congiderations
concerning the region of convergence are then unnecessary, alihough r(t) enn
contain singniarities itscll, so that an integral over z{t) docs nol converge
and in that case, the Laplace transform for 2:{(t) therefore does not exist.

L{x{t)} can be analyscd in the entire region of convergence.

Within the region of convergence the derivative of Laplace tranforms can be
formed corresponding to the complex frequency (4.14), We will discuss the
differentiation theorem in the freguency-domain in Section 4.7.7.
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4.6 Existence and Uniqueness of the Laplace
Transform

4.6.1 FExistence of the Laplace Transform

The previous considerations of convergence of the Laplace transform can he sim-
ply summarised: the Laplace transform exists if the region of conversence 1s not
cmpty, We have already discussed in detail how the region of convergence is de-
fined from the right- and left-sided signal parts. Admirtedly, however. finding all
siugularities is arduons with complicated signals, 50 we ask the question: is there
an alternative to determining the existence of the Laplace transform directly from
the time behaviour of x(£)7

In order to answer this question we introduce the concept of exponentinl order.
If & function is of exponential order, the Laplace hitegral converges.

Definition 12: Functions of expounential order

A funtion x(t) o5 of exponential order lox ¢ — 0. #f, from a defined fome point
T, at grows ut most as fast as an exponendial functon.

et < Me vz {4.18)
A function (1) 1w of exponential order for ¢ — —o0, Y

le(t)i < Me™ v < T {4.19)

M. C.D are erbirary but fized constants (M > 0}

For functions «(¢) that are inlegrable hetween say finite lmits. we can already
make assertions about the existence of their Laplace transforms. if (1) is replaced
by Me™ and Mel* i each Laplace transtorm. we can say from Exaunples 4.1
and 4.2 in Section 4.4 that:

e il o right-sided function 2t} in accordance with (4,18} is of exponential order
for & — co, then £{z(#)} exists for Re{s} > €.

¢ i aleft-sided function 2(¢) in accordance with (4.19) is of exponential arder
for ¢ — —oc, then £{x{f)} exists for Re{s} < D,

These assertions for left-sided and right-sided funciions can be put together for
bilateral hmetions:
If for & hilateral function x{t),

Lo Jafd)] = MeP® for # < —F and

2. )| < M for e = T
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.
3 | |x(t)idt < M < oc

then L£{x(¢)} exists for € < Re{s} < D.

As the estimates used are sufficient but not necessary conditions for the con-
vergence of integrals, the existence conditions for Laplace {ransforms derived from
them must also be sufficient but not necessary, This means that the region of
convergence can be larger than the strip between ' and D,

4.6.2 Uniqueness of the Inverse Laplace Transform

With the examples in Section 4.4, we saw that functions of time can be uniquely
expressed by their Lapiace transforms, and likewise, the Laplace transforms each
have a unique function of time, if the region of convergence is correctly taken
into considerasion. We are intcrested in knowing whether assigning a function of
time to a Lapiace transforin is unique or does this representation of the function
lose information that cannot be recovered by the inverse Laplace transform. The
following theorem gives the answer.

If the following conditions for two functions of time are trne:

1. f(#) and g{t) are made up of continuous sections
2. f(t) and ¢{¢) are of exponential order ¢ — o0 and £ — —oc

3. the Laplace transforms F(s) = L{f(#)} and G{s) = L{g(t)} exist
and have overlapplng regions of convergence in the s-plane

4. F(s) = G(s) in she region of convergence

then f{t) = g(t} everywhere where f(#) and g(t) are continuous.

The proof of this theorem can be found |4, Chapler 8]. Instead of examining
the details of the proof. we will consider two examples that clarify the conditions
of the theorerm.

Example 4.7

The function of time f(f) = () and g{t) = —=(—¢) fulfill both conditions 1
and 2. For the Laplace transform., F(s) = G{g), bt with each differenl region of
convergence, so thal no overlapping oceurs

e(t) o—e . Rel{s}>0

—e{—t) o—a

= | =
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This does not fulfill the second part of condition 3, and so we cannal say anything
about whether f(t) and glt) are equal. In fact, 2(2) # —e(—1} for all t, even where
hoth funetions are consinuous. This example emphasises how impertant the region
of convergence is,

Example 4.8
Figure 4.7 shows three functions that all fulfill conditions 1 and 2. They are
only distingunished by their value at the discontinuity atb £ = 1, which is marked by
a black dot, Only the middle function can be expressed by the step function (4.6}
(e{t — 1)). Calculating the Laplace transforms of the three functions shows that
conditions 3 and 4 are also fulfilled, and the theorern: confirms the observation
that all three functions are egqual everywhere where they ave continuous, that is
for t <« Land £ > 1. The theorem says nothing about the discontinuity at £ = 1,
which would in [act, be impossible, ag the differences between each two functions
for £ < 1 and + > 1 are zero and the integrals over them also have the value zero.

1 4 s P,
1 1
14 ——m )
s E_ . Re(s}>0
O— 5
| ¢ /a
Lt O
L
N :

Figure 4.7: Hxample 2 of the uniqueness of the £ transform

The previous example shows that the representation of a function of time by its
Laplace transform does actually lose information: the information about [unction
values at discontimmities. Admittedly thongh, discontinuous finctions of time are
often only idealised versions of rapidly changing coutinuous signals. The step
function €(#) is & good example as it represents an ideal switch operation, for which
the assignment of a [unetion value at the Ume of switching § = 0 is arbitrary. A
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switch at ¢+ = 1 could be characterised just as well by one of the other signals
in Figure 4.7, The loss of information about the amplitude at discontinuities is
therefore insignificant for many practical applications, We can also summarise the
unigueness theorem this way:

The assignment of a signal to a Laplace transform and vicel
versa is unique in both directions exclusive of discontinuities, _|

For practical problemns this property iz sufficient.

4.7 Properties of the Laplace Transform

For the simple signals we have considered so far, evaluating the integral (4.1) has
been the shortest way to find the Laplace transform. When dealing with compli-
cated signals it i3 an advantage, however. to be able to use flie properties of the
Laplace transform. and avoiding having to cvaluate the Integral direcily. Often
it is also necessary to perform an operation oun a time-domain signal (e.g. differ-
eutiation) in the frequency-dotnain,. We will learn the most imporbant properties
of the Laplace transform in this section, and formulate theorers for them. The
theorems will be needed in later caleulations using the Laplace rransfori.

4.7.1 Linearity of the Laplace Transform

The Laplace transform is lincar. so from the Laplace transform of a linear super-
position of two functions of fime, the Laplace transtorms of these functions can be
recovered. For any two complex constants ¢ and &

Lla- F)+b-g(t)} = - (PO} +b- L{g(D)) (4.20)

for all values on the complex frequency plane. as long as both £{f{$)}} and £{g(#)}
~exist. The region of convergence for the combined function is the intersection of the
regions of convergence for the individual functions. Singularities may be removed
by the addition, however, so in general the combined vegion of convergence is a
super set of the intersection between the individual regious of convergence:

ROC{af + bg} D ROC{SIN ROCLg} . (4.21)

Ta show linearity, a - f{£) ++ - ¢(t) is inserted into the definition of the Laplace
transform (4.1). From the linearity of the integration, (4.20) is immediately ob-
tained.
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Fxample 4.9

Az an example we will evaluate the Laplace transtorm of x(#} = cosh{at) - ={t).
This signal can be split inio iwo exponcential Tunctions

oty = cosh(at) - e(t) = = (2 + %) - g(8).

B —

and now we can use the Luplace transform of each of the exponential functions.
With (4.7},

X(s]:l( ! 4 ! )'—'— - Ref{s} »a> 0.

28s—a s+a & - 02

The Laplace transform of the cosh function can be traced back without integration
to the already known transformation of the exponential lunction.

4.7.2 Shifting in the Time-Domain and Frequency-Domain

Obtainlng the Laplace transtorra of time signalyg that have been shifted fn time
or multtiplied by an exponential function is simple. As these Lwo cases are closely
related, we will consider them together.

IF X(s) = £4{x(t)} is the Laplace iransform of the time function 2(¢) and the
region of convergence ovcupies s € ROC{x}, then the shaft theorem

(f,{:r(i: ~ Y= X (s}, s< ROC{x} (4.22}
and the modulation theorem
Llea(t)y = X(s~a), s-Refa} € ROC{x}., «€ ﬂ:—i (4.23) .

apply. When multiplied by €, the region of convergence is displaced by Re{w}
to the right. Both theorems can be proven by the substitutions ¢ = ¢ ~ ¢ and
s = & — v inte the definition of the Laplace transform (4.1},

Using the modulation theorem we can alse clarify why the region of convergence
of the Laplace transtorin has Ute form of a vertical strip in the s-plane. A vertical
displaccmnent in the s-plane corresponds to a multiplication of the thue funetion by
et for a purely imaginary value of o, Since these factors have a modulus of one.
the muliplication does not change the convergence of the Laplace ntegral (4.1).
The region of convergence must therefore he a vertical strip.
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4.7.3 Scaling of the Time Axis or Frequency Plane

An expansion or compression of the fime axis occurs, for example, if the anit of
measurement, of time is changed or if the speed of a magnetic tape changes. Irom
the Laplace transform the original time signal X (s) = L{=(t)} . s ¢ ROC{x}
becomes N
: 5

C{elat)} = — X (4) . a#u. (4.24)
: 1! @

The region of convergence is scaled in the same way, ie. s € ROC{z(at)} if
Ze ROC{z(t)}. This relationship is shown through the substitulion ¢ = at’
a

into (4.1).

4.7.4 Differentiation and Integration in the Time-Domain

Tt is necessary, when dealing with differential equations, to know the Laplace
transform of the derivation. and the integral of the time function. Construciion
of this refationship begins with the ioverse Laplace transform in (4.2)

1 (LR =] .
ety = — X(g)e™ds
it} 7 /a_‘;.x. (g)e™ ds

It 2(£) con be differeniiated, we differentiate by ¢ and obtain

In(t a - gex ) )
dqd(f ) - 2_?1rj X{s)se™ds . {4.25)
4 LRy Lo

We can take the differentiniion theorem from this expression:

g{d‘z(:J} =sX(s): se€ROC 2ROC{z). (4.26)

Through ntegration of x{f) the wmitegration theorem is obtained:

ot
£ { / rr{z.“)dr} = %X{s).s € ROC 2 ROC{zN{s: Rels) >0} .| (4.27)

The integration produces a pole at 5 = 0 that has an effect on the region of
convergence.

Although the differentiation theorem {(4.26) is very simple and casy to remem-
ber, in this form it is only wvalid for functions 2(#) that can be differentiated for
all t. Many important signal torms, hike sgnare wave or saw-tooth signals are ex-
clided by this condition. For this reason we will discuss some extensions of the
ditferentiation rule that can also handle instantaneous signal changes.



78 4. Laplace Trans{orm

Next we consider right-sided siguals, that are only non-zerc for L 2 1), and that
may have a slep at £ = 0. This leads to the difflerenziation rule of the unilateral
Laplace transform, that is lmportant for the solution of the initial conditions
problemn (Chapter 7). Then we lnvestigate signals that may have any number
of steps,

4.7.5 Differentiation Theorem and Integration Theorem
for the Unilateral Laplace Transform

Systems that are switched on at a specitic time point (e.g. £ = 0) have an output
signal «({) typically like that shown in Figure 4.8.

x(t}

wr) .
— e -

Figure 4.8; Signal with and without step at =0

Before the turt-on point (¢ < 0], x(#) is zero and afterwards (¢ > 0), z(¢)
is any function that can be differentisted. For £ = 1 the function can jumys
instantancously and so x{t) as a whole cannot be differentiated, and the conditions
for the use of the differentiation theorem in the form of (1.26) are not satistied.
In order to give o useable equation, however, we represenl the right-sided signal
x(t) by a bilateral signal u(t) which can be differentiated, and the step function
=(t){see Flgure 4.8):

zft) = u{t)e(f) . (4.28}
In the following constraction we nse the signal #(t) i place of the signal 2(1). This

replacement is necessary [or unique formulation of the differentiation theorem.
The Laplace transform of x{t) (4.1} is

X{s) = /:c:(t)e_”dt = /u(t}e““" dt . {4.29)
oo ]

Partial integration of the second integral expression yiclds

[

_ 1 s
X{s) = 21 w{t)e™ " " + = /-r'i-(t)ff o (4.30)
8 s,

]
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1f w(#) and therefore also w(#) has exponential order for £ — oo, then s € ROC{x}
sX(s) = u(0) +ft’t(0e”“‘ dt. (4.31)

0

Unfortunately we cannot simply replace 4{#) with &(¢), as the derivative of x(#)
at ¢ = 0 does not exist. To avoid this difficulty without using complicated mathe-
maries, we introduce the function

op _ Jou{ty >0 By t=0 . ey
z°(t) = { 0 pen = { a ten = 2(E) Vi 0.  {4.32)

It is the same as the derivative of x{f) where £(£} can be differentiated (¢ 5 0)
and i is not defined at # = (. This hole in the defined region is vot a problem,
as we have already seen in Section 4.6.2 that deviances at isolaled points do not
infhuence the value of the Laplace transform,

1L should also be noted that at £ = € the value w(0) is equal to ihe right-sided
it of z(t) at £ — 0. This value 15 also known as 2{04):

w(0) = lim (0 + 6 = w(04).  §>0. (4.33)

We have now obstained the diflerentiation theorem of the (bilateral) Laplace trang-
form for right-sided signals:

L4z (8} = s X (&) — m(0+) . (4.34)

1t expresses the function 27 () ~ which like (4.32) represents the devivative of z(t)
- hy the Laplace sranglorm of x(t) and the z(0-+).

For signals that are initially only defined for t = (1, the wunilaferal Laplace
transform £y, which integrates only for positive time 0 < {1 < no, i3 often used.
For unilateral signals it is not distinguishable from the bilateral Laplace transform,
and therefore has the same differentiation thecrem (4.34). It is often given in the
[orm:

£{E()} = sX(s) - 5(0) | (1.35)

where it should be noted that the fuietion x(#) and its derivative is only of inferest
for ¢+ = 0 and the value of #(0) shiould be understood to be the right-hand side
limit (4.33).

The integralion theorem of the unilateral Laplace transform matches the inte-
gration theovem for the nunilateral Laplace transtorin (4.27) as @(£) does not have
to be differentiable:

) - _
]_;! {/{3 z{ f)dfr} = %X(‘?} s € ROCZ ROCHz} N {s: Refs} » 0} w|r {4.36)
i _ h:
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The unilateral Laplace transform is often used when dealing witl initial value
problems as its differentiation theovem explicitly takes into consideration the fune-
tion valie at £ = 0, We will continne using the hilateral Laplace transfornn. how-
ever, and take iuto account the special properties of unilateral functions where
appropriate (see {4.34)).

4.7.6 Differentiation Theorem for Piecewise Continuous
Signals

Thie case of the vnitateral function just considered is a special case of a piccowise
coutinuous signal. The term ‘piecewise continuous’ means thai the sigual may
have stops but inbetween it is differentiable. Figure 4.9 shows an example of such
a signal with steps at times £y, €2. #3. The heights of the sieps S{t,) are positive
for upward steps and nepative for downward steps. We will restrict ourselves here
to signals with a findte rounboer of steps.

‘ , A ]

F | x(#) 1
| ' |
1 ' |
NG
el 1

\#-900 | LT
| ! | |
1 12 | ’

fiigare 4.9: Exaaple of a precewise continuous signal

As in (4.28) we assemble the piecewise continuous signal &(t) from the differ-
entiable functions u;(t), that cach are switched on ab the time of the respective
step. The heights S(t,} are equal to the values of the new functions u{f,):

x{t) = u{t) + Zu,;(t)a(‘é -1,y and St =udl) . (4.37)

=1

Using the Laplace transform and partial integration (4.29. 4.30) for all of the
surmmmed terms in (4,37} vields

o X

| “ 1 — _ .
X(S} = -‘J; [ [”0(!) -+ Z{L‘E (t)g(t — F,,_) (—j_Sf- af — .: Z -H.i{-f,’){?.“!‘-f- A (4\),3)
N (2

p=1
B o Lo
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The expression in the square brackets of the first integral corresponds to the deriva-
tive of w{t} where the signal is continuous (see (4.32}). that is. exchiding the steps:

29 () = dglt} - Zu = Bty (£H. =10, (4.39)
=1

With the step heights S{2,) [ram {4.37). the Laplace transforn of X () s finally,
X(8) = 11,'{'3:”(11'}} + liﬁ)‘(f Jo ¥ (.40}
X e p L . Al

Rearranging vields the differentiation theorem for piecewise continuous sighals:

T

LAzt =a X(s)— Y e 8(n) (4.41)

=1

It containg the differentiosion theorem (4.34) for unilateral functions with a step
al == () ag a special case.

Exampie 4.10

We will now use the differentiation theorem for piecewise continmous sig-
nals (4.41) to caleulate the Laplace transform of a iriangular impulse (¢} shown
tu Fignre 4.10.

x40

Figure 4.10: A triangular impulse and 1ts derivative

From {4.41) we obiain
L{x(E)} = s X5} . (4.42)
as the triangle impulse is not differentiable. but without steps. X (s) is the un-

known Laplace transtorin of the iriangle signal. The lunction 2°(4), which contains
the derivative of the differentiable region of 2(t) is here the easicst to determive
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and i shown in Figure 4.10. Instead of evaluating £ {z°(f)} using the Laplace
integral (4.1) we use the differentiation theorem {4.41) a second tine, and obtain

r {.’I:Dc'{:t)} —sr {‘1 26T 2 1 e (4.43)

{ 2T T o T are”

As ®(t) is zero al all points where it is defined, with (4.42) and some rearrange-
ment,

1

0= s X(s) - T

et - TEOT = X () - Tz isinh(sT))* {4.44)

The Laplace fransform of the triangle signal is therefore

; 12
J\’(s):["’mh_(i%—}] . (4.15)

&1

Using the differentiation theorem [or plecewise continuous signals (1.41). we
avoided having to do any integration.

4.7.7 Differeutiation in the Frequency-Domain

The relationships for the Laplace transforms of differentiated functions of time
that wo have so far deali with in detail, will be used in Chapter 6 to analyse LTT-
syatems it the fregnency-domain. i the samne way, refationships for the derivatives
ol Laplace iransforms can be found. They are mainly useful for deriving transform
pairs for frequently ocourring functions.

As a Laplace transform is analytic in its region of convergence. it can be differ-
entinted any mnmber of times, As in (4.25), we obtain with complex differentiation

of X{s} from (4.1},
dX(IS) = / 2y (~t) e dt {4.46)

and we can then obtain a theorem for the Laplace transform of functions of time
#(t) that have been multiplied by the tine variable &

t Lita(t)} = dedis] . s € ROC{z} J (4.47)
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Example 4.11

As an example we will calenlate the Laplace transfornr of  x(#) = te™ g ().
We will be using the transform paiv
. 1
£le™™e(t}} = - Re{s} > —a.

derived in Dxample 4.1. With (4.47) wc obtain

: i i i .
Leatarayl — 4 - . 4.48
Cipeet} ds L‘+(¢] {5+ a)? (448)
Repeated use yields
Lt e()) = i (4.49)
e e (t TR A
L]

4.7.8 'Table of the Most Important Laplace Transforms

When dealing with simple LTE-systems it is suflicient just to know some of the
more [requently occurving transforin pairs. The most important are snmmarised
in Table 4.1, All of the pairs Hsted (and many more) can be derived from the
relationships introduced in the previous sections, More comprehensive tables can
b found in Appendix Appendix B.1, the relevant textbooks or in special collectiomns
of Laplace transforms [14]. When using such tables always take note of whether the
unilateral or bilateral Laplace transform was specified. Most tables in textbooks
give the unilateral Laplace transforms, but they can be used to find bilateral
Laplace transforms if the function of time is corapleted by multiplying it with the
step function e(t) (see Section 4.3).

4.8 FExercises

Exercise 4.1

Catenlate the Laplace transforms of the following signals using (4.1), ag long ag
they exisi. Defermine the reglon of convergence tor each, when you determine a
condition for s for which Lhe Improper integral converges.

a) x{t) = sin(f) &(t)
b} #(t) = ¢inlf)
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Table 4.1, Some importaut transforin pairs for the Laplace transform

a(e) X(s) ROC
#(t) —1; Re{s} >0
e et S—id Re{s} » Re{-a}
T O ::::“ Re{s} < Re{—a)}
te~ (1) (q—;}—a? Rel{s} > Re{—a)
e Mo (t) e +I?j)¢-;+1 Rels) > Ref-a}
(sinayt)e(t) ﬁ; Re{s} >0
{eoseyt)e(t) = _swuz | Re{s} >0

¢y o) =eFe(t =T
dy wit) = te? eft)
e} ®{t) = sinh(2) (1)
Check the regions of convergence with the properties given in Section 4.50.3

Exercise 4.2

Which of the following functions are of expouential order for § — 7
) 5 : 5 vy o= 2T .y
a) i By tP 20247 ) ) e ey e f)sin(f)

Exercise 4.3

For which of the following funciions can the bilateral Laplace transform exist?
Check whether the functions are of exponential order for ¢ — s and # — —o0.
a) sin{e)  LYsin{t)e(t) ¢y d)He™

Exercise 4.4

Prove the lnearity of the Laplace transform {4.20) using {4.1).
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Exercise 4.5
_ e+ 3 el — ds+1
PO = a4 O = T
right-sided signals.

are the Laplace transforums of two

a) Find the poles of #'(#) and give the veglon of convergence,

L) Find the poles of G(s) and give the region of convergence,

¢) Find the poles and zeros of I'{s) + G{s) and give the region of convergence.
Exercise 4.6
Prove

a) the shift theorem {4.22)

b) the modulation theorers (4.23),
by substinting {4.1){ = ~ zand s = 5 — a.

Exercise 4.7

Prove equation (4.24} (time and frequency scaling) by substituting ¢ = atf
into (1.1).

Exercise 4.8

Derive the transform pairs in Table 4.1 starting with the transform pair

1 .
£(f) oo X(s} = —. Rel{s! > 0 using the theorenns from Section 4.7.
&
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5 Complex Analysis and the
Inverse Laplace Transform

In Chaptor 4 we started with thne functions and through evaluation of The integral
definition in (4.1}, verified the Laplace transform. For the reverse, the so-called
wnverse Lopluce transform wo gave the equation (4.2) without giving a pustification.
In this chapter we will look at the inverse translonu in depth with the help of
cownplex function theory. Wo restrict ourselves to Laplace transforms that only
have poles, and have no significant singularities. it wilt be shown that for these
cases, carrying out the inverse Laplace transform leads to sitople caleulations that
can be performed without having to continually refer back o function theory. The
first step is to commit the Iimportant results from complex analysis to memory.

5.1 Path Integrals in the Complex Plane
We consider the complex function

Qls) = €(s) + 7Qi(s) (5.1)

of the complex variable 5. The real and imaginavy parts of (s} are denoted by
Q.-(8) and ;{s).

In order to describe the integration of such a funection it is not sufficient to give
two limrits of integration. As s may take any value in the complex plane, all of
the valunes on the path between the start and end points nmst be given. Such an
integral is written

I= | Qs)ds. (5.2)
/

where W ois the path of integration in the complex plane. To define this path
precisely, the valnes of s that lic on the path are given as a funciion of the real pa~
rameters 1. This is called a perametrie curve. Figure 5.1 shows such a parametric
path of integration in the s-plane. For v = v4, s(r) takes the complex value of
the start point A. likewise for ¥ = vy s(w) takes the value of the endpoint B, For
ra4 < v < vy, s{v) tollows the desired path of integration W. The integral {5.2)
means that the value of Q{s)ds is accunmdated from all of the infinivesiial elements
ds on the length of the path W.
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.
Jwo i B
V=Vg

v

V=V 4 '~ ____ infinitesimal element ds
x of the path W
A

o
W= {s:s(v) = a(¥) + julw) A vy < v < gl

Figure 5.1 Path of integration in the s-plane

For evaluation of the path inlegral not only is ({8} represented by real and
imaginary parts as in (5.1), bul also s(#).
s(1) = a{v) + jwiv) . (5.3}

Inserbing {3.3) into equation {5.2), and using the substitution s = s(i/} gives {afler
multiplying out and collecting termns) two real integrals with respoct to the real
paramocter v

[&¥i}

/Q(&}d.s = fQ(S)%Ed” (5.4)

W
= /{Qr(e‘a —(}; ('f) }du-‘—)/[@ (s\ —+qu ) d:z.

The path integral in the complex plane {5.2) is actually only a compact form of
the lengthy expression in (5.4). As {5.2) can be viewed as a sum of nany real
value integrals, the known rule for real integrals is also valid for the path intcgral
in the complex plane.

5.2 The Main Principle of Complex Analysis

1f Qis) is analyiic (i.e. free of singularities) in a region G then the integral

B
/Q(s)ds: ]Q(s}ds:: ]Q(s}ds (5.5)
A

¥ Wy
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is independent from the path, as long as both paths W and Wy run completoly
within ¢ and there are no singularities between them. Figure 5.2 shows two paths
of integration that produce the same value when infegrated. An fmportant result is

TN T
Jjo?t /,r’ '\\\
A N:
(M|l o
AN
Wi
L)
L I_‘__i_ [ [

g
Figure 5.2: Independent path integrals W and ¥,

obiained if the integration stretehes from A to B along the path W) and then along
the path W5 against the direction of arrow back to A. Such an integral around a
closed path is called a cirenlar integral and is denoted by an integral sigh with a
circle, If the Wtepration along W5 and W, produces the same value. the civeular
integral along W7 in the dircction of the arrow and Wo against the direction of
the arrow must give the value zero. This statemoent is valid for any paths W and
Wy as long as they ave inside . The main principle of complex analysis follows
directly fromn this: every circular integral inside the region G disappears if the
path of integration does not include any singniarities:

j{@(a)dﬂ =1}, (5.6}

5.3 Circular Integrals that Enclose Singularities

The previous statement refers to paths of intogration that do not enclose singular-
ities. For the characterisation of complex {unctions, however, the singularities are
important. We therefore also need relationships for cirenlar integrals that contaiu
singularities.

Next we clarify whether the value of a cireular injegral containing a singularity
depends on the route of the path of integration, We consider Figure 5.3 which
shows two different, closed paths of integration W) and W, within the analytic
region . Both enclose a singularity that lies within the white region in the middle
wlich daoes not beloug to G. For the calculation of the difference between the two
cirewlar integrals along W, and W5 we can refor back to the caleulation of two
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circular integrals without a singnlarity. In place of the calculation of the integrals
along W, and W, we go from W) to Wy, and then back again along 1¥;. The new
circular integral along W, does not coutain the singularity. The same procedure
s repeated for the untraversed parts of Wy and Wy and the path of integration
Wy is obtained. If the transition from W, Lo W, and vice versa. ig chosen so that
the coutributions te W, and Wy cancel due to the opposite orientation, then the
integration along W, and Wy equals the difference of the integrals along W and
Wy, As neither W, nor Wy encloses a singularily, bollt integrals are zero and
thercfore the inteprals along W), and W5 have equal value,

) sl ds — Jshds = Hs)eds 81 lg = 7
Gt~ Quds=f Qo+ f Quid=0. 6D

W)

Figure 5.3: Egual value integrals around a singularity

This argument can be nsed for any two ring integrals arcund a singularity in
G. The valne of the integral does niot depend on the form of the path containing
the singular inner region,

I o closed path of integration W countains multiple singularities (see Figure 5.4)
we can show in the smne way that the cireular integral along ¥ is the same as
the swn of the circular integrals around the individual singularities (W, W5 and
Wy in Figure 5.4).

in & multiset connected analybic &, the vahie of a circalar integral only depends
on which singularities are enclosed by the path of integration

N

Q(s)ds = 3¢ Qs)ds. (5.8)

gz " “";pu.

The value of the cirenlar integral around an individual singularity. independent
from the path of integration W,. can also be expressed by the corresponding
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restdinuns |
Ry = — ?ﬁ Q(s)ds. (5.9}
2ng Jw,

The eqguation

N
}( Q(shds =27) > R, (5.10)
w

pe—=1

i called the residue theorem. We will show how to caleulate residues in the next
seclion.

analytic
region G

tigure 5.4: Regulay area with multiple singularibies

5.4 Cauchy Integrals

Now that integration aronnd multiple singularities has Leen reduced to caleulating
cirqular integrals around individual singularities, it still remaing to be determined
what value an integral around an individuoal siugularity hay, That is equivalent to
caleulating the residues in (5.9). To this end we consider a singularly connected
analytic region €7 of a complex function F{s) according to section 5.2

b Fis)ds=0 YW CQ. (5.17)
S

The function
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is then formed, which has a simple pole at s = sg. For the circular integral of Q(s)
around the pole s (see Fig. 5.5). the Cauchy ntegral is

Q) ds = ) ds = 27 F(sy). {5.13)
w

Jw 8 S0

}'(D -

O
Figure 3.5 Singularity so In the rogatar area GG

The Cauchy integral can easily be proven by integration of an infinitesimal
circle arvund sp. that is paramertricised. for example, by s(¢) = 8e/*™ + s4. For
any small radius 8, along this path: F(s) = F{sg).

5.4.1 Residue Calculation

With the Cauchy integral we can easily give the values of the residues (5.9). For
a simple pole of Q{s) al s,

1
= — b Qs)ds = Fis,). 5.14)
Ru= g, QUads=Elsy) (5.14)

Although it is nol necessary, the residucs ean be found using complex integration.
i only Qs) is known, the residuumn R, al 5, (5.12) can also be [ound using the
Linit:

R, = qu{i} Q)5 — .01 (5.15}

The caleulation of a circular integral for a complex function with many simple
poles can be done using the residue theover (5.10) and (5.13), This technicue is
particularly appropriate when Q{s) is a rational fraction function.

Caleniation of the residues has so far ouly been shown for stmple poles. To
calculate multiple pole residues, we need some further resulls from the Cauchy
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integral. We now wrile it in the form

i Flw)

F(s)=
(2) 2y fu W s

dur . {(5.16)

It can be shown that regularity (i.e. being analytic} of the complex derivatives of
F(s) entails regularity of F'(s) itself. Then

L dF(s) 4 U Flw) 1 56 d Flw)
Fls) = ds  ds2my fypw—s du ory fw dsw— s dw =
(5.17)
= __L —'im;—(hﬂ-

2ry fu (w— s5)?

Interchanging integration and derivation with respect to s is permitted as Lhe
integral converges nniformly. Deriving {n — 1)-times with respect to s gives

dintl (n—1)! F{w) ,
tn=h, 1) = —i—— 5, 5.1
F (s) = dslnmh Fis) 2mj _év {(w— s ; (5.18)
With the function Fs)
e — {6.19
Ol = Gy )

and the correspondingly altered nolation in {(5.18), we obtain a formula for multiple
poles Lhat is equivalent to (5.13)

. C () 1 re 1) .
0, (8) ds = S = 2 e . 20
‘ér :‘) (q} ol = é&, (‘3 _ S{J) s 2 T”L - ,l.)l. (SO) (a }
The residuum at the location of the n-order pole s, of Q,{s)
Ra= g ), Qutoyts = s 6.21)

is again obtained without corplex integration, from (5.19)

ti—1

1 d .
R = (n— i S [d T (@nla)(s — 5,)")] (5.22)

5.4.2 Integration Parallel to the Imaginary Axis

The last section showed that the Cauchy intepral significantly simplified the eval-
uation of circular integrals aronnd single and multipie poles, using the residue
theoremm. In this section we will discuss shother siimplification that leads Lo a form
of the mverse Laplace transform. It can be used not only for poles, but also for
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essential singularities, but first we have to make sowe restriciions. We constder an
analytic funcilon F(s) within a region, that decays by ab least 1/1s) for sulficiently
large values of |s]

A

[Fis)) < —. (5.23)
B
M is any positive real number. Then
Fs y
LR ___,n{) (5.24)
g = &y |,‘s’|‘

with the positive real number M. To use this decrease for large values of )s} we
choose the circular integral around sy as in Fig. 5.6. ‘Fhe analytic region contains
all values of s where Re{s} > 0y, The path of infegration consists of the path
Wy, which runs parallel to the imaginary axis at a distance oy > 7y;,, and the
path W9, which is an are with radius & avound e origin

QﬁjF(Sn):}. Fis) ds:f%%dﬁ RACIPN {5.25)

Wo+W, 5~ S0 An J §— 50
P W, W

We eslimate the integral over W, with (5.24)

jo t

ay

o
Aanatytlc region &

e
P A A S O

Figure 5.6: Path of integration with curve segment Wy, parallel to the imaginary axis

J 88|
LW, oW

i o
B i

F(s)

& — &

|ds| < / # \ds] . (5.20)
W
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The last integral can be paramelricized with s(v) = Re’”, and we then obtain

/2 ni2

. 1 ds{v) o 1 _ lf_l_f

AM / ld‘v] = M / W Ao duv = A f }?z F}'R(’ | di = )
W, 2 /2

{5.27)
YFor B — oo the valiue of this integral approaches zero, so that in {5.25), only the
integral via the path W, remains:

Tp = o b
3) 1 (s
Flsy) = 1 F(s) ds = —— f ——~(~}—dq with  Re{se}l >0y .
2 } 5 — &0 271'.’} Sy o~ 8
frp—{—_pr,x, o

{h.28)
Thus under the condition (5.23) the civeular integral is calculated by integration
parallel Lo the imaginary axis.

5.4.3 Importance of the Cauchy Integral

If an analytic fauetion F{s} is known along a closed path W, and F'{s} is analybic
everywhere in the enclosed region (Fig. 5.5), the Caucly mtogra.l {5.16) can be
used to calculate F(s) everywhere in the enclosed region. The pole in (5.16) iy
moved to a location of interest. Ti is therefore completely sufficient to know F(s)
on the bordey of an analytic region. It is likewise sufficient to know F(s) along
a linc parallel to the imaginary axis (5.2%), to be able to caleulate every value
to the right of the line. Because it is differentinble, an analytic function has a
strong inner structnre. In fact, F'{s) can even be analytically continued outside of
a closed path W, and also when F{s) is only known along a section of the path.

Now that we have found the Canchy integral. the review of coruplex analysis is
concluded. We will now use the result 1o derive the formula for the inveyse Laplace
transtormn and give simple ways 1o perform it, In this respect, the Cauchy integral
is important for two reasons:

» The simplification of the path of integration considered in section 5.4.2 leads
directly 1o the forrmda for the inverse Laplace transtorm.

e The residue theorem (section 5.4.1) allows a simplified caleulation of the

inverse transfortm (without complex iutegration) for systems with single or
multiple poles.

5.5 Inverse Laplace Transform

To dorive the inverse Laplace (ransformm we starl with the Cauchy integral in
the form of (5.28). The condition (5.23) is always fulfilled by a rational fraction
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Laplace fransform, if the numerator is of a higher degree than the denominator.
Otherwise the nverse transform leads to distributions in the time-domain that will
be introduced i Chapter 8. We will begin with the derivation for the unilateral
Laplace transform and then extend the result to the bilateral Laplace transform.

5.5.1 Inverse Unilateral Laplace Transform

To derive the nverse unilateral Laplace transform we use the Cauvchy integral [or
a path of integration paraliel to the imaginary axis (5.28), where we rename s as
s and s, as ¢

Fell e
1 F(s"y o - .
Fis)y = 2 / p— ds’  with Re{s} > o . {5.29)
T

We comtinue using the Laplace transform of a unilateral exponential function {com-
pare Example 4.1)

i 1
L{e* (1)) = Li{€ l‘} = [ Sty = pomyl Re{s} > Re{s'} . (5.30}
0
Dutting (5.30) into (5.29) vields

Tty e

]. R
Fis) = 5= [ F(s /e‘“ fe stdtl dy'
2
F—joc ¢
(e 1 R W S
= —_ nTOUARR L R I ‘B s
= /%J / Fs')e” “ds'] 77 el (5.31)
0 o —
I

by swapping the integrals under the condition thal the convergence is of the yame
type. Comparison with the woilateral Laplace transform in (4.5)

)
F(s) = £o{f()} = [[f(r)1e-sﬁd-¢
0
shows that F(s} is the Laplace transtorm of the time function inside the square

brackets in (5.31). Consequently. the bracketed expression represents the inverse
unilateral Laplace transtorm:

el aivie s
1 .
f(t) = % / F(S)Cdtds . (532)

T
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5.5.2 Inverse Bilateral Laplace Transform

The inverse hilajeral Laplace trapsform can be formed by combining the mverse
transformn already obtained for right-sided signals and the corresponding inverse
translormn for lelt-sided signals (see Example 4.2). The derivation for lefi-sided
signals is carried out as in (5.29) to (5.32), so that we can avoid repenting steps.
The two steps are distinguished from each other by the direction of integration of
the Cauchy integral, and the sign of the lefi-sided function.

As the region of convergence for left-sided time functions lies letl; of a vertical
line in the s-plane (see Fig, 4.4). the cirenlar integral must also be contained within
the feft half of the s-plane, Since. hy definition, ihe positive orientation of complex
conbour iutegrals is connter-clockwise, the parallel to the imagivary axis has Lo be
traversed in the opposite divection to (5.29). This leads to o change of the sign
compared Lo (5.29) for the Laplace transform of left-sided exponential functions

g — 5

¢
. E ’ ]_
L—e{—t)et '} = — /fﬁ Lem 8l = e (5.33)

This is the same in Examples 4.1 and 4.2, where a left-sided and a right-sided
function of time have the same form of Laplace transform. Note that here there
Is & minus sign in front of the left-sided exponential function.

Patting (5.33) into the Canchy integral for left-sided signals compensates for
both changes of sign and we lkewise obtain for the inverse transform egna-
tion (5.32). This shows that the inverse of right-sided and bilateral Laplace
transforos have the same form. The region of convergence showld be considered,
howover, for the hilateral Laplace transform .

A Dbilateral signal can be gplit into left-sided and right-sided components, so
the inverse hitateral Laplace transform can be expressed ag

rfr-f—;{oo
f{t) = LY F(s)} = —5};]— / Fs)e™ ds . {(3.34)

5.5.3 Path of Integration for the Inverse Laplace Transform

The choice of the path of infegration W, in Fig. 5.8 i3 appropriate Lecanse it
caft be eastly parametricised, but alternative choices would also be possible. Also,
svery other path of integration within the region of convergence of #(s) gives the
sanme residt, since F(s)e® is analytic. Fig. 5.7 shows several permitted paths of
integration. The multiple possiblitics ave only useful when the complex integration
ig actually carried out by parametrisation. In most cages it is simpler to use the
residue theorem.
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Figure 5.7 Vanous paths of integration for an nverse Laplace transform
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5.5.4 Calculating the Inverse Laplace Transform with the
Residue Theorcm

Calculating the inverse transtorin is siplest with the residue theorem. Ft reduces
the calculation effort Lo partial fraction cxpansion, which will be discussed later.

On first glance, it seems impossible Lo carry out the inverse Taplace transform
with the residue theorent. To use the vesidue theorem, a path of inlegration must
he chosen (see Section 5.3} for which the function is analytic and the singularities
are enclesed. On the other hand, we kuow {rem Chapter 4.5.3. that the Laplace
transform is only defined within its region of convergence, which is a strip on Lhe
complex plane that contains no singularities. A path ol integralion that encloses
all singularities must therefore run outside the region of comrvergence. where the
Laplace integral diverges.

To solve this conflict. we use the method of analytze continuation, which is
related to the discussion in Section 5.4.3, We will explain this method wich Exam-
ple 4.1, where we will caleulate the Laplace transform of a mnilateral exponential
function f{t) = e ?*z(¢). The resuli is (4.7)

1

Fls) = LD} = Lle(tle ) = ——

Refs} > —a.

Outside of the region of eonvergence (for Re{s} < —a} the Laplace transform does
not exist. The function

. 1 .
Als) = — (5.35)
840
is analytic in the entire complex plane, except for the points s = —a. Within the
region of convergence of F{s},
F(sy=A(s): Rels} > —a. (5.36)

In coutrast to F{s), il is posgible to choose a closed path of integraiion with a
field of regularity that encloges the pale s = o (compare Fig. 5.4). The value
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of this integral can be calenlated using the residue theorem. A{s) is known ay
the anelytic condenaetion of F{s). In the same way, every other rational fraction
Laplace transform can also be assigned an analytic continuation. The difficulties
encountered when using the residue theorem have now been removed, as we can
now calenlate the residues using analylic coutinuation. In terms of the actual
caleulation, the switch to analytic contimiation makes no difference as it has the
same form as the Laplace transform,

We will limit ourselves to vight-sided functions at first, for the sake of simplicity.
These functions have, of course, a Laplace transform with a right-sided region of
convergence. so sl the singularities he left of the path of integration for the inverse
Laplace transform (5.34). By cowbining (5.34) with the residue theorem (5.10).
we obtain

. o410 N
FEy= L F(s)) = o7 ] Ps)le* ds = Z B, . (5.37)
s ‘ it
T3

The path of integration is completed from s = 0 — joo to 8 = 7 + joc by a very
large (approaching infinitely large} arc through the left half of the s-plaue, If
F(s)e™ decays wore quickly than % with growing radins R, the coulribution of
the urc to the integral disappears. so its value is not changed by closing the path of
integration. Tor a closed path of integration, however, the residuc theorem (5.10)
can be nsed. and (5.37) can be immediately obtained. For a rational fraction F(s),
for which the denominator is greater than the numerator. (5.37) is valid for £ > 0.
If F(s) contains exponential terms, lor example, the disappearance of the arc’s
contribuiion to the integral dependent on ¢ imust be investigated separately.

For bitateral functions of time we have to complete the path ol integralion
with a second arc through the right half of the s-plane. which then encloses the
singularities to the right of the region of convergence. The sum of the residues
of F(s)c™ in accordance withi (5.37) then yields for a rational fraction (s). the
time Iunction f{£) for ¢ < 0, because the contribution of the arc to the integral for
Re{s} > 0 only disappears when # < 0. Using the observations in Section 5.4.1,
the residues can be obtained by integrating the analytic continuation of F{s)e®t
on & path arousd all poles. For simple poles the residues B, of F{s)}e™ (5.15) are

Ry = lim [F(s)e™ (s — g,)] = Pue™" . (5.38)

En

These can also be expressed by the residues £, of I'(s)

Py= Jim [F{s)(s — s4)] (5.39)
as e i analytic in the entire complex plane, Caleulation of the inverse Laplace



) 5, Complex Analysis and Lthe Tnverse Laplace Transform

transforin for a rational fraction I7(s) with suuple poles is then reduced to
I

!\14. N
) = LY P($)) = Z Plesuts(t) + ZP,:{-:”»*E(—{) ‘ {3.40)
pil w=1l

Here. ‘”rj are the residues (5.38) of F(s) for poles left of the region of conver-
gence and P77 are the residues for poles right of the region of convergence. The
surmnation covers all N4 to N poles.

The same resmlt is obtained for a rational fraction funetion F'(s). when we write
F(5) as a partial fraction cxpansion

N

Plsy=3%" Lu (5.41)

8= 8,

=1

Piece-by-plece inverse iransforming, while bearing in mind the location of Lhe
poles relative to the region of convergence leads exactly to (5.40). Of course, this
is not a coincidence beeause (5.39) is the formula for calenlating partial Fraction
coefficients for simaple poles, There are also other methods available for caleulating
partial fraction coeflicienis, for example. equating coefficients.

For raudtiple poles, the residues R, of F(s)e™ are obtained from (3.22}

d[n—"l)

T S A o T WV SR 5
By = S o ety L s (5.42)

The use of this forinla is demovstrated in an example.

Example 5.1
The Laplace transform

1 .
Flg)= —oo—uuo0 | Refs} = -1 5.43
."'} {S'{— 1)(3 + 2)2 {"_l ( }
has a stple pole at 57 = —1 and a double pole at 33 = —2. The inverse transform
requires that the residues are caleulated at both these points:
Fiy=LTHF(s)} = Ry + B (5.44)
with
et .
= Fa)let{s 4+ | o = et 5.45
R (s)e™ (s + 1 ., (s F2)|,__, (3.45)
1 d : g 2 d ¥ } ‘
Ry = ————-— Fis)e™(s+2)* = e |
2 (2 - 1)‘ dc‘)’ - (‘1) ( ) ] Jr—— dS [(S + }') A=
et lest

—2 —ut o
— _ ; g e T 5,46
(3 +1)2 v [‘5+1):[’.s:—2 ‘ ( )
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From the two residues the funclion of time can now be put together, As I'(s) is in
rational fraction form and converges in the right half-plane, the inverse transform
leads to a right-sided Minetion of time:

Ft)y =L HF(s)) = [¢7" - e —te™¥] e(t). (5.47)
n

A relationship to the partial fraction expansion can be constructed here too
for multiple poles. An example of this is given in the next section.

5.5.5 Practical Calculation of the Inverse Laplace Trans-
form

Using the residue theorem avoids evaluation of complex integrals, hul for complex
poles, it requires caleulation of complex residues, For rational fraction Laplace
transforms with real munerator and denominator coeffivients, the corresponding
function of time is likewise real, even when complex poles appear (here in complex
conjugate form}. It would therelore be convenient if the inverse transforin could be
earried oul purely with real calenlations. This car be done using an appropriate
combinstion of partial {raction expansions and the moditlation theorem. We will
show the procedure in an cxample.

Example 5.2
We want to find the inverse Laplace transform of

) 2
F(s) - 22

RS e R A L R (5.18)

We can see from the region of convergence thas we are dealing with a right-sided
function of time. Starting with the partial fraction expansion

222 A Bs+ O

Fls) = e e = -
(s) (s 4+ - ds+40)  s+3 F 52+ 4s + 10

(5.49)
and with (5.13), we obtain

202 o 22 _ . sy
s ds+40|, 57 =6, 3.50}

— lim [F(s)(s + 3)] = — =
Jim [F(s)(s + 3)] L 512440 W

As the other poles of F(s) are complex. we determine B and € by equating
coefficients, to avoid having (o calowdate complex residucs, From

(3" +4s +40)+ (Bs + CYs+3) = (64 B)s® + (24438 + s + (240 + 3C7) = 222
(5.51)
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we obtain 8 = ' = —§.

We can expect. that for a second-order denominator with real cocfficients and
complex conjngate poles, that the corresponding function of time is composed of
sin amd cos termy. We therclore want to bring the sccond term of the partial
fraction expansion (5.49) inte a form that corresponds to sine and cosine functions
of fime. ‘This cant be done by completing the square

Bs+C —6s—6  ~6(s+2)+6 (552)
— T T J.d
Ti4s+ 40 s rds+do (s+2)2436 "
Putting this iuto (5.49) gives the representation
. 6 5+ 2 6
F3) = o — G 4 . {5.53)

s+3 0 (5422462 (s42) + 62
With Table 4.1 and the modulation theoremn {4.23) we obtain the function of tine

Flt) =67 2{t) — e cosbt - () 1 e sin bt - (1), (5.54)
|

Partial fraction expausions are also advantageous for multiple poles. They
avoid multiple derivations with respect to s when calculating the residues (5.42).
bt the partial fraction coefficlents have to he caleulated instead. Fo compare the
two possibilitics we will consider the function from Example 3.1 once mnore,

Fxample 5.3

The partial fraction expaunsion of the [unction F(s} frotn Bxample 5.1 needs
three coeflicients:

i /"1 B; Bg

() (5+ 1){s +2)? S—I—1+s—|—2+(s+2)z (5.55)

For simiple poles the coofficients can be caleulaied (5.39):

A= lim [F(s) (s + D) =1, (5.56)

To understand how B, and By are determined, we congider the term

541 s+1
(s) (¢ = —— 5.57
Fa){s+ )= A+ B ) Bg( ey {5.57)

again. Substiluting s = —1 gives the exact value of A because the other two terins
becowne zero, This procedure also works for Bz, so

(sf2)

Fs)(s+2)° = 1

+ Bl(S + 2) 4 By (558]



5.6. Exercises 103

and setting s = —2 yields

b’g: lml (Fle)(s+2)]=-1. (5.7

o
o
oy
e

We oldain B| in the same way if we form

Lipw 2= £ B g ] = al [BEE]L

s+ ds | s5+1
(5.60}
and put in s = -2
. 7] - a1 . ¥
By = lim —[F{s)(s+2)% =-1. (5.61)
s——2 {.{3 N
The partial fraction expausion of F(s) is then
. 1 1 1 1 .
Fig)= = - - . (5.62)

(s+Dis+2)  s+1 s+2 (54 2)2

Inverse transforming term-by-term, for example. using Table 4.1 gives the same
result that we obtained in Example 5.1 with the residue caleilation. as long as we
bear in mind the region of convergence:

Fity=CTHEGE)} = (e - — ¢ te=* e(t) . {5.63)
n

The principle nsed in the previous Example 5.3 can be extended to cover order
m poles. Partial fraction coefficients B ... B,,, are then found with

| B

: d o . 5
B, = e bll,n* o Th [F{s) (s — gp)™] e=1...m. (5.64)

5.6 Exercises

Exercise 5.1

Find the Cauchy integral (5.13) by integrating an infinitesimal circle around s,
which should be parametricised by s(i) = sy + 8 92™, 0 < v < |, whare § can be
any small real number.

Exercise 5.2

Find the inverse Laplace transform f{t) = L7 F(s)} of

_ 2— 2« _ o
F(s} = e L) Re{s} -
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Fxercise 5.3

Find the inverse Laplace transtormn f(#) = L7 (s)} of
28— 1
Fls) = G ;)—_(_‘;_—F—LL) Re{s} > —1. Compare different methods of partial

fraction expanston.
a} Caleulate all partial leaction coeflicients with {5.64).

b) Calenlate the partial fraction coefficients of (s + 4) and {5 -+ 1)* with {5.64)
or {5.3%) and the others by equating coefficients.

¢} Calculate all fowr partial fraction coefficients by equating coefficients.
Exercise 5.4

s+ 3 ) . . ,
Fis) = T L5 has complex conjugate poles and a right-sided region of
53 8

convergence. Find its inverse Laplace wransform f() = £7H{F(s)} and represent
the resuli as sine and cosine terms.,

) . A A"
a} Usc the complex partial fraction expansion F(s) = ——— + ~

5w, 8-t

b) Coraplete the square, then use the shift theorem and Fable 4.1

Exercise 5.5

Find the inverse Lapidce transform f(¢) = £~ F{s)} of

Fis) = ——rrm——, Re 0 using partial fraction expansion with real
8) = o7 2)( T {s} > gp pé

vahes.

Exercise 5.6
Find the inverse Laplace transforin of
52— 52

£{s) = (87 + 452 L5~ 6)- 8¢

Re{s} = 1.

Exercise 5.7
et 192 _1pte o B
.5:: : .12.‘:_ 165 — 5 . Re{s) > -
s+ 78% 41762+ 175 + 6
Determine the fuverse Laplace transforin f{t) = L7{F(s)}. {(Note thai there is a
double pole at —1.)

Lot Fi{s) =



6 Analysis of Continuous-Time
LTI-Systems with the Laplace
Transform

The Laplace transform iniroduced in Chapier 4 does not only serve to charuc-
terise siguals; above all it provides an elegant deseription of the properties of
LTT-systems. In systen and network theory, it is the standard method for deriv-
ing the gystem response. In particular, given initial values of the output signal
and initial stales of systems can be considered using it.

We are now concerned with the derivation of the systemn rosponse so bilateral
signals and with this we can defermine the transfer (or systemn) function. At the
end of the chapter we will extend the results to cover combinations of UT'T-gystens,
Fhe solution of initial value problems will then be dealt with in Chapter 7.

6.1 System Response to Bilateral Input Signals

In this section. we consider the response of LT-systerns Lo input signals, on which
we make no restricilons, except ihat their Laplace transforms st exist. In
particular, bilateral signals are also permitted.

Next we recall the definition of the Laplace transform from Chapter 4.2, where
we had interpreted it as the analysis of n function in expouential terms, and
its lnverse as the recombining of these terins. Now we put o {urther operation
in between these two steps, that we have already encountered in Chapter 3.2.2:
determining the response of an ETT-systom from its eigenfunctions. With this, the
three stage system analysis thal we outlined in Chaptar 3 is complete:

1. Analysis of the inpuat signal in expopential terms can now be accomplished
with the Laplace transfori.

2. Detormining the system respouse from the individual terns, with help from
Lhe system Mnction.

3. Combining the individual componenls at ihe system output to form the
complete outpit signal is aclieved with the inverse Laplace transform.
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To mathematically formulate thie system analysis we look back to the inverse
Laplace trabsforin, expressed as a Riemann sum (1.4). For ontput signal y(z).

y(t) = 3 ,xlfau—}u (o Yisp)e™ + Y (s1)e™" + ¥sa)e™ + ..} As. (6.1)

The individual terms of Lhe sununation are gingle complex exponential functions,
and so also eigenfunctions of the LTT-system. As in Chapter 3.2, we can express
this by multiplication of the exponential terms X {s,)e™? of the iuput signal (1)
{see (4.4)} with the system function H{s) (see Figure 6.1}

Y{s,)e%" = H{5,)X{s,)e** (6.2)
and thus obtain the output signal
1. - . 5
u(t) = 5 i {k Hso)X(s0)e™ 4+ Hls) X (s)en (6.3)

o H{s)X(s2)e" + ..} Ds.

(1) Mi)
- S e ot
X(si)ent H{(s0)X (s.)e*!

Figure 6.1: Eigenfunctions of an LT T-system

Instead of the Riemann sumn we now wrife the corresponding complex integral

1 Ty . i L& 1] ,
e HiX (e ds = — / Yi{s)eds. (6.4)
i | Hex =R 6.4

From this follows the fundamental relatiopship between the input and ontput
signals of LIT-systems {see Figure 6.2)

¥ (s) = H($)X (s). (6.5)

(%) is the system funciron or fransfer funcion. that we already kmow [rom
Chapter 3.2, Tn contrast to Chapter 3.2, however, it is vot now only delined as
the ratio of exponential oscillations, but also more generally as the ratio of the
Laplace transforms of the input aud output signals. The systew: [unctlion is the
key 1o inding the system respounse. hecause it represents » complete descriprion of
an LTI-system. There are two fundamuental ways of finding the system fonction:

i. Forming the quotient of ¥ (s) and X(s). i the input and output signals are
keryown.
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2. Analysing the system, if its internal structure is known.

The first. possiblity is a case of systern wlentyfication, the second is system anolysis.
Using some simple networks, we will show the procedure for system analysis,

o(t) —— HisE 1)

X(s) Y(s) = H()X(5)

Fignre 6.2: Determining the system response with the systens {or trausfer) funciion

6.2 TFinding the System Function

We will now demonstrate how to find a system Pinction, wsing fwo electrical net-
works as examples, In Chapter 3.2.5 we learnl two ways of avoiding physical
dimensions. We will performn both of these methods here — in Fxamples 6.1
Lo 6.5 we will work with normalised equations. and in Examples 7.1 to 7.5 in the
next chapter, we will demonstrate the procedure with physical units,

Example 6.1
The first network we will consider is the RC-cireuit depicted in Figure 6.3. The
components have already been normalised 50 that they have helpfid values,

C=0.01
o———di » o
(1) = &(f) R=10 wlp) =7
e . 4 O

Figure 6.3: RC-circwt

Analvsis of this network can be carried out directly in the frequency-domain. il
the componenss are given their complex inpedances (from Table 3.2). The system
{unction is immediately obtained if the Laplace transform of (he ontpnt signal is
divided by the Laplace transform of the input signal:

Ua(8) R 3
His)= 7+ = — = - (6.6)
U (s) R+ - 2+ 10

C




108 6. Analysis of Contirmous-Time LTH-Systoms with the Laplace Transform

With a known input signal, the Laplace transform of the output signal follows
immediately with (6.5) as Ua(s) = H{s)U (). For a slep fonction ={1) at the
input we obtain {compare Table 4.1)

. 1 1 o

(s} = H{s)~ = . Re{s}>-10 : ua() = e Me(t) . (6.7

25} {5}8 0 Re{s} . 0 teg(f) = ¢ ft}. {6.7)

The input output relationships in the time-domain and the frequency-domain are
shown in Figure 6.4. The respouse to the step fanction z(¢) is called the step
response. IMgure 6.5 shows the step response for the RC-civenit.

uy(8) = e(t) ———n gfﬂ‘) = gt} = e (1)
o o
. .
{7 (s) = 1, Refs} =0 Uy (s} H(s) = L
s - ' s+ 10

Figure 6.4 System funetion and system response [or the RC-civenit

()

= (1)

&
k.

Figure 6.5: Step function and stop response for the RC-circuit

n
As the input signal is explicitly left as a bilateral signal, the outpul signal it
defines contains the entire past history of the system since # = —ac. for every point

in time. Additional knowledge of mitinl conditions or states of energy stores at
certain tines is not required.

Example 6.2

We consider for the second network, two independent RC-circuits as shown in
Figure 6.6. As the voltage ux{#} is coupled to the right part of the circuit hy the
voltage source, the system function is

Usts)  Us(s) Us(s) = &

HO= 009 " 0l Uil ™ e top

(6.8)



6.2, Finding the System Function 09

C =0.0l C =001

i . o
WO =@ | 06 ‘ IR =10 %)Q(r) R=10 |us(t)=2
o & > . )

Figure 6.6: Indlependent RO-cixouits

ui(t) = e(t) —— gﬁo—);w ug(t) = (1 — 10t)e™ " Ye(t)
: i

Ur(s) = = Uy (s)I1(5) = —

! 5 S A P

Figure 6.7: System function and system. response of the independent RC-cirenits from
Figure 6.6

Driving the cireuit with a step funclion gives a transform of the ontput signal
similar to (6.7}, A simple partial fraction expansion and inverse fransformation of
both terms with Table 4.1 vields

5 1 10

Usle) = (s +10)2 ~ s+i0 (s+10)2 *° us(t) = (1-108)c " e(t) . (6.9)

Figure 6.7 shows the input-output relationship in the time-domain and the
trequency-domain.  The behaviour over time of the step finection at the input
and of the voltages w,(#) and wy(f) is depicted in Figure 6.8.

Figure 6.8: Step function and step response of the independent RC-circuits from Fig 6.6
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6.3 Poles and Zeros of the System Function

The system function is a completely different kind of system description of the
networks in Figures 6.3 and 6.6. Even so, if the circuits are described by fewer
components, then the corvesponding system function will also be simpler. The
systern functions here cau be defined by giving all of their poles sud zeros together
with & constant factor. Only rational fraction system functions will eceur when
we are dealing with LTT-systemns with a finite number of cuergy stores.

As an example we consider the system function of the RC-circuil in (6.6).
Figure 6.9 shows its magnitude on the complex frequency plane. The zero at
5 == () and the pole at s = —~10 aze easily recoguiseable. Their location defines the
valne of H({s} {(both magnitude and phase) at all other points on the s-plaine. 1t
is therefore sufficient to give these points to define H(s) to a constant factor. A
plot of these points in the s-plane is known as a pele-zerc diagram.

" bole

H ()l

Figure 6.%: The magnitude of & system function

Two examples of pole-zero diagrams are shown in Figure 6.10, The upper
cdiagram represents the system function [rom Figure 6.9. and the lower diagram
represents a systern function with deubie poles and zeros at the samne locations.

Poles and zeros ad roots of the numerator and denominator polynomials of a
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& 4

His) =79 [ Im(s) X - pole
O - Zero
% & -
10 Rels}
42 1
N AN Im{s
T .
(2) @ | » dauble zero
double /16 1 Re{;}
pole

Figure 6.10: Examples of pole-zero diagrams

rational fraction system Diuction can also take complex values, For polynomials
with real coeflficients, however. thev always oceur in complex conjugale pairs,
Figure 6.11 shows a simple example.

4 )
Im{s) Double zera at s =10

X + 1

. (2)’ . Poles s = —14& 5

-1 Reis)
- o2 -2

% | H(s) = \ I.u, __ Ks

{814+ 3)s+1=35) & +28+42

Fignre 6.11: Pole-zero diagram with conjugated complex poles

The order of a system i given by the mumber of poles it has. which is equal o
the mumber of independent energy stores. The munber of zeros has no influence
on the order of a system.

We have already briefly remarked in Chapter 3.2.2 that the system function
also hag a region of convergence. Ofien this relates to causal sysbeins, for whieh
the response at the owlput cannol oceonr earfier than the cause at the input. For
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cansal systems the region of convergence lies ko the right of a vertieal line through
the rightinost singnlarity, and with a rational fraction system function, to the
right of the rightmost pole. The location of zeros has no influence on the region
of convergence, In order that the Laplace trangform of the output sigual ¥Y(g) in
Tigure 6.2 exists, the region of convergence of the input signal X {5} and the system
function H{s) must overlap. As the regions of convergence for right-sidled input
signals and causal systems always overlap, if Re{s} is chosent to be large enough,
the region of convergence of the system function is nol nonnaily of interest. The
region of convorgence for systewn Iunctions in gencral, not just causal systems, will
emerge later from the couvolution theorem {Chapter 8.4.2).

6.4 Determining the System Function from Dif-
ferential Equations

The gystem function was found relaiively easily from the network in Section 6.2
through the use of complex impedances, It is even easier 1o determine (he transfer
fimetion if an LTI-system is given as a differential equation (with constant coef-
ficients). Use of the differentiation theorem {4.26) replaces every derivative of a
tunction of time by a product of a power of s and the Laplace transform of the
function of time. The differential equation then becomes an algebraic equation,
which immediately yvields the trapsfer function. We will show Low this is done
with two examples.

Example 6.3
From the differential equation

2§ — 3y + 5y = W0F — Ta. (6.10)
use of the differentiation theorem (4.26) yields the algebraic equation
257Y () — 3sY (s} + 5Y (5} = 10sX(s) —~ TX(s), (6.11)
from which we can obtain the transfer function

L Y Ws-7
Hs) = X(s) 282 ~35+5"

(6.12)

The coeficients of the differential equation come directly from the coefficients of
the transfer function.
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Example 6.4
The reverse is also possible: obtaining a differential eguation [rom a lransfer
fimetion. From the transfor function

_ ¥(s) 5% o2 _
sy = = = 6.13
B = ) ™ G107 = 52 + 208 + 100 (6.13)
we obtain the algebraic equation
(2 + 205 + 100 ¥ (s) = 8% X (s}, (6.14)

which, using the differentiation theorem (4.26), corresponds o the differential
equation

Y420y 4+ 100y = 1. (6.15}
l

Il the input signal caunot be differontiated for all values. the dillerentiation
theorem for signals wilth conlinuous sections (4.41} ranst be used. This will be
covered in detiadl in Chapter 7.

The region of convergence of the system function cannot be found from the
differential equation alone. To determine il, we reguire further information about
the causality or siability of the system. Initial condition problems, which will be
cdealt. with in Chapter 7, imply that the system we are dealing with is cansal.

6.5 Summarising Example

In the previons examples only the step respounse was determined. that is. the
response to a signal that takes the valie zero for ¢ <2 0. It represents a special case
of hilaxeral signal, that does not excite a system for t < 0. Now we will shiow how
to delermuine the system response to a signal that is always non-zero.

Example 6.5
We consider the system response of the RC-cireuit from Example 6.1 to the
input signal

() = BeTMe(t) + 3eMe(—t) = 375 (6.18)
1
L]
i 3 3 . n
Xig) = - . —h < Re{s} < 5. (6.17)

#+H s~5

With partial fraction expansion, the Laplace transform of the output sizgual iy
given by

s 4 3 1
X{z) = .
(q) 5+ 10

45 §5—13

Yis) = s+ 10

(6.18)
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The region of convergence {(ROC) of X(s) lies completely in the region of conver-
gence of the system function for the causal RC-circuit Re{s} > —10. The inverse
transform can take place as integration within the ROC -5 < Re{s} < 5. so that
the first two terms lie left of the ROC and lead to right-sided functions of time
because of their poles. The third term leads to a left-sided function of time.

yl(t) = e Wi (t) — 3e b () + e 1), (6.19)

The signals x(t) and y(t) are illustrated in Figure 6.12. To test this, we begin

Figure 6.12: Input and output signals i the time-domain

with the differential equation of the RC-circuit that can be either taken directly
from the network in Figure 6.3, or alternatively from the transfer [unction as in
Example 6.4:

g(t) + 10y(t) = &(t) . (6.20)

To show that y(¢) (6.19) fulfills the differential equation. we separate the cases
t<Oandt>0. Fort <0,

Bt —de y(t) = €. <0 (6.21)
and therefore
gty + 10y(t) = 15 = i(t), t<0. (6.22)
Fort > 0,
z(t) =37 yt) =4 — 3 £ 0 (6.23)
and therefore )
B(t) + 10y(1) = —15e™™ = &(t), 0. (6.24)

The output signal (6.19) satisfies the differential equation of the RC-circuit for all
time ¢ where the input signal can be differentiated. The differential equation is.
however, not sufficient to confirm the validity of the solution. For example.

y(t) = —4e70(—1) — 37 e (t) + Pe(—t)
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also fulfills eqnation (6.20), but does not correspond to the causal RC-cirenit. The
two solufions can be distinguished by the region of convergence of their Laplace
transtorms.

|

6.6 Combining Simple LTI-Systems

Until now, we were only concerned with indivichwl systems and thelr system func-
tions, each determined by a given system deseription or differential equation. In
Section 1.2.2, we had formulated the goal of system theory as being abstract from
the details of the system implementation. When deseribing a system with a sys-
tem funetion, we therefore do not always want to fivst deseribe all subsystems. or
recreate the complete dillerential equation or state-space deseription. Instead it
would be more appropriate to obtain the system function directly from the known
svstenl functions of the subsystems, To do this we only need to know the gimple
relationships between systems counected in common forms. These forms are series
coupled, parallel coupled and feedhack coupled systems.

6.6.1 Series Coupling

Figure 6.13 shows two systems with the system functions H)(s) and Ha(s). thas
are conplod in sevies so (kat the oulput signal of I (s} is the input signal of He(s).
From the system functions

Yi(s) Yis) ..
tHi(s) = = Ha(s} = 25
l(;’) .}{(S) 2("‘} YI{_S) (b ])
we can inmediately find the system function of the whole system
Y(: Yis) Yi{s .
H{s) = L) &) D) 6By (5) = By () Eals) (6.26)

X(s)  Yi(s) X(s)

The output signal of a system with svsiem function H(s) = H(s)H,{s} is therefore
identical to the ontpub signal of the two systems H(s) and Ha(s) in series. Both
system components can be iterchanged without altering the output signal.

Example 6.6
The direct form I shown in Figure 2.1 represents the series coupling of two
systems, The system functions of the component systems are

_ b{}S'N + ... + Z)N_ls + b;\.r
= 5 .

Hy(s)

5
. (6.27)
Sr’\t

s + . o 18 +an

Hy(s}
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el H($) N U ) Q) S—
x{f} yi(n (1) identical

output signals
et HiA{5)-H | (8)
x() v

Fizure 6.13; Svatoms m series

Their product represents the desired system function for the differential equia-
tion (2.3):
[‘J[].‘-J'N + ... thy st by

His) = Hi{s)Ha(s) = - .
(” L(b) 3(%) a.{)s"\‘ P N AN R ¥ b

(6.28)

As hoth component systems are iuterchangeahle, we could carry ont the transfor-
mation from direct form I to direct form II shown in Figare 2.2,

Examplc 8.7

The two independent RC-cirenits from Example 6.2 are an example of series
coupling of systems. Their transter function is the product of the franster function
of the two individual RC-circuits from Example 6.1, The decoupling of the two
circuits with the controlled voltage souree (Fignre 6.8) i3 necessary Lo prevenl the
second system [row affecting the first system.

6.6.2 Parallel Coupling

The parallel circuit in Figure 6,14 has two component systems with the same input.
Because the system is linear,

Yis) = Hy(5) X (s) + Ha(s)X () = [Hy (s) + Ha(s)) X () = H{)X(s). (6.29)

The sutput signal of the parallel cicuil is therefore identical to the output signal of
a svstem with systent lunction H(s) = Hy{s) + Hp{s). We have already made use
of this relationship with partial fraction expansion. Ixpandiag a systemn function
into partial fractions ts nothing more than the dividing up of o system into simpler
parts. ‘The parallel forr in Figure 2,10 is likewise a diviston of an order NV systemn
into & first-order systems.
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[

H (s)

1

x(t)

H,(s)

1

: v(t)

I

P —

x(1)

H,(s) +Hys)

T PRVITE—

¥(1)

.

output signals

identical

Figure 6.14; A parallel system

6.6.3 Feedback

Systems with feedback like Figure 6.15 are very important in control systems and
have many nscful applications. At the output of feedback systems we find the
OXpression

Y(s) = F(s)[X(s) + s}V (s)]. (6.30)
This vields the system tunction
O Y(s) £(s)
His) = = | 3.3
)= X5y T T Fe00) (6:31)

_..@_..> F(s) - )
1) I (1)
G(s) output signals
I identical
L Fs)
x(£) 1-Fis)G(s) ¥(t) ’

Figure 6.15: A feedback ayslem
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Example 6.8

Every branch of the parallel form in Figure 2.10 contains a feadback system of
the kind in Figure 6.15. The transfer function of the integrators comes from the
integration theorem (4.27), while the transfer function in the feedback paith is o
constant:

] -
F(s):: Gls)=A. 1=1.....N. {6.32)

Together with the relationship for series coupling, the transfer [unetion of each
path is
h.é_cl'

jr— = . 6.43
1- %,\f §— A, (6:83)

H'i (S} =}

The entire transfer function can be obtained with the parallel coupling relationghip.
as the sum of all parbial transfor functions Hi(s), 1= 1,... N,

Example 6.9
If a system with transfer function F(s) is an ideal amplifier with amplification
tactor V', then F(s) = ». The transfer function of the feedback system is then
Vv 1

Hi) = Ty = e (6.34)

If the amplification is very high, then the approximation

1

HO =55

{6.35)
can be used. This means that e nverse of a transfer function G(s) cau be im-
plemented by a feedback system. The high amplilication required can be achicved
using operational amplifiers {see Chapter 2.2.5).

6.7 Combining LTI-Systems with Multiple Inputs
and Qutputs

The riles discussed in the last seclion for series, parallel and feedback coupling
of systemns can also be combined and used to analyse complicated block circult
diagrams. We are still confined, however, to systems with only one input and one
output. We now would like o extend these ruiles to cover systenrs with mmltiple
iputs aid outpies.
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We have already met systems with mdtiple jupnts and outputs in Chap-
ters 2.3.2. 2.5 and 2.6. The transler function of a system with A4 input signals
and K output signals is a & < M matrix H{s} which combines the vectors X{s)
of the transformed input signals and the vectors Y{s) of the transfermed output
signals (see (6.5} ).

Y(s) = H{5)X!(s}. (6.36)

The individual elements of the matrix H(s) are the scalar transfer functions be-
tween the individual components of the input and output veciors X(s) and Y {s).
The clemert in vow K, column i is the transfer function between the input num-
bhered p and the ousput numbered &

Yols) = Houls) X ,uls) . (6.37)

The rules for combining systems with multiple tnputs and outputs are obtained
with the laws of matrix caleulation in the same way as in the last section for only
one input and outpul.

6.7.1 Series Circuits

The series circuit for two systerms with multiple inputs and ontputs is shown in
Figure 6.16. Of course, the number of inputs of the second system must be the
same as the number of outputs of the Hrst system — then the matrices of the
transfer tunctions H; {s) and Hz{s) are compatible, and we can express the transfer
funciion of the complete system with Hy(s) and Hy(s). With

Y {s) = H {s)X(s) . Yis) = Hy(sYY1(3) {6.38)
we find for H{s)
Y{s) = Hyfs)Y){s) = Hals)H,(s) X{s) = H{5)X(s) {6.39)
H{=s)

and therefore

[H‘(b}: Fo(3)Hq (s) . (6.40)

In contrast to systems with only one input and output, the matrices H, (s} and
H: (s} cannot be interchanged.

6.7.2 Parallcl Circuits

IF two systems are to be connected in parallel (Figure 6.17), the mumber of both
inputs and owtputs must be the saige for hoth systems. Under these conditions,
the matrices Hy{s) and Ha(s) each have the same uumber of rows and {he same
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=N Hi(s) N H(s) —
x(?) y1(9) y(o) output signals

identical

o His(s) H(s) ——
x(£) y(0)

Figare 6.16: Series conpling of systems

numbey of columns, We can then express the addition of the output signals by an
addition of the syatem funetions

Y(s) = Hi(s)X(s) + Ha(s)X(s) = [H, (s) + Ha(s)] X(s) = H(s)X(s). (6.41)
Nt oot

His)
This yields
Hs) = Hq{s}+ Hyls) . (6.42)
——— H;(5} |
X(7) (0
L3 Ha(s) [ ouiput signals

ilentical

N H((s) + Ho(s) [——— J
X(N ¥(5)

[igure 6.17: Systemns coupled in parallel

6.7.3 Feedback

Figure 6.18 shows o feedback system with multiple inpuls and outputs, Here we
nmst. take special care with the dimensions of the matrices. We begin with addition
at the input. AH vectors here mmst have the samme vumber of elements. If input
vector X({s) has A clements. then matrix F{s} must have M columns, and matrix
G{s) must have A rows, At the output, the signal Y (s} from the output of F(s)
is combined with the input of G(s), s0 if Y{s) has K elemenls, F{s) must have K
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cotumns. Thevefore F(s) must be a K » M matrix. and G(s) must be o M x &
mabrix,

To determine the transfer funclion, we consider the outpui {as in (6.30}}. Yor
Y (s} we can write

Y(s) = F(s)[X{s) + G(s)Y(s}]. {6.43)
We bring the terms containing Y'(s) 1o the right-hand side and factorise Y{s)
[I ~ F(2)G{8)] Y (s} = F(s)X(s). {6.44)

Here, Lis o K« K unity matrix, so the product F{s)G(s) likewise has dimensions
N x K. Apain special care must be taken over the correct sequence of the matrices.
Ag the matrix in the square brackets is quadratic (K x K, it can be inverted, as
long as none of its eigenvalues ave ecro. With this condilion.

Y(s) = [I-F(s)G(s)] F(s) X{s) = H(s)X(s). (6.45)
H(s)
and
H(s) = [E—-F(s)G(s)] lF(s}—._l (6.46)

The transfer function matrix H{s) is given by the transfer functions F{s) in
the forward branch and G(s} in the reverse branch, as in the sealar case if we
replace the division in (6.31) by a matrix inversion and note that the order of the
mairix wultiplication F{s)G(s) canmot be changed.

A2 Fi5) ————= ]
X(1) I ¥
1
G(s) identical
e output signals
T H[E - FOG(s) ] Fis) ————>

x(1) y(#)

Figure 6.18: A feedback system

6.8 Analysis of State-Space Descriptions

The rules we have considered for the parallel, series and feedback circuits for
systemy with multiple inputs and outpurs are ontirely sufficient for analysis of
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many LTT-gsystems. As an example for their systematic use, we will calculate the
transter function of a general state-space representation for a systom with multiple
inputs and oubputs as shown in the block diagram in Figure 6,19, It represents the
state-equations {2.33.2.34) described in Chapter 2.3.2. As before, we start with

a vector x(4) with Af input signals,
a vector y{t) with K outpul signals and
a vector z(f) with N state variables
The matrices of the state-space model then have dimensions
N x N,
EV— > ﬂi{ .
B o2 N
Hox M.

SCaw»

I
1 D
L

71 7 z(1)

x(1) ¥
A

AN

Figure 6.19: Block diagram of a state-space representation

The complete transfer function H(s) for this state-space representation is ob-
tained hy suitable analvsis of component transfer functions and by applying the
rules for combining LTI-syslems step-by-step. First of all. we recognise a parallel
circuit in Figure 6.19, with two component systoms with the transfer functions

H,(5) and Hy{s).

Hy(s) = D. (6.47)

which means that the transfer functions in the direct path bebween input and
output are all constant, From (6.42} we know that for the transfer function H(s),

H{s) = Hi(s) + Ha(s). {6.48)

The component transfer function Hj(s) st be determined from the lower path.
H, consists of three systems in series (6.40}

Ho(s) = Hua(s)Hz(s)Ho (s) {6.49)
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with
Hgl(s) =B . Hgg{ﬁ) = . (650)

The component, {ransfer function Hoa(s) is obtained by analysing the [eedback
systern that consists of the loops (1) snd =(t). with the notation

we obtain with (6.16).
1 ~ty . i

1is a unity matrix, size N x N, Now all component transter functions have been
found. we obtain from (6.48) and {6.49}, the compleie transfer function is

H(s) = Hos(s)Hao(s)Han (s) + Hy(s) (6.53)

or with {6.47). {6.50) and {6.52)

H(s) =ClE- A]"'B+D. (6.54)

By applying the rules for combining L'Tl-svstems, we have lound the fundamen-
tal connection between the matrices of the state-space wodel, and the transfer
function of a system with multiple inputs and oulpuls.

6.9 Exercises

Exercise 6.1

Determine the transfer function H (s} of the following series resonant civcnit using
complex inipedances.

L R
0'—-“—{:3'—1—0 R=1
(1) C us{ty L=05
A <= o

Caleutale the step response us(t).

Exercise 6.2

Draw the function (t) = (t) e ¥ and the tangent at the point «{0). The tangent
can be used to help construct the graph of exponential functions, if its point of
intersection with the z-axis is known. Determine the point of intersection.
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Exercise 6.3

Determine the trapster function that has the following pole-zero diagrarm.

al Imfs} b} lin{s} ¢) Im{s} ) Im{y)
x 1 O 2
Re{s) Re{s} 1 Refs)
-3 -1 4

+ + .‘: + 196 -
-1 1 -1 1
*® Li O LQ

Exercise 6.4

Two systems are given by differential equations:
a) J+2¢ -ty =2%+4d +4r

e - 42: — i

dty L. d*y ;
dt? d

ey
— 3= + 25— - Tiy =
oA T Ty Ty

Determine the transfer functions H(s) and draw the pole-zero diagrams of the
systens.

Exercise 6.5

Determine the transfer function and the differential equation of the system with
the tollowing pole-zero diagram and H(0) = 1

4. lm{s}




7 Solving Initial Condition
Problems with the Laplace
Transform

We assumed when we considered the response of sysfews to bilateral signals, that
the input signal of o system for time —~0 < ¢ < o¢ is known. The systein response
depended exclusively on the input signal, and the case where the input signal is
zero for # < (F and the system is at rest for £ < 8, was inclhuded.

In many cases, observation of a systers 18 started at a partieutar point in fime.
The input signal before the point is unknown, but all that is needed to represent
the past history ol a system is konowledge of the system state at the time when
observation begins. Evaluation of the system respouse must therefore rely on the
state found before the start, and the behaviour of the input signal since thew. In
the terminology of diflerential calenlus this is an wmitwel condition problem.

The way the system state can be given depends on the available description
of the system. For a description of a pliysieal structure, for example, an electrical
network. the state of the energy stores is available. For a description that uses
block diagrams or a stale-space structure, the states of the integrators or state-
values can be given. If only the differential equation of a systom is known. such
internal values cannot be observed, but instead, (he past history can be reprosented
by the value of the output and its derivatives, at the time thal the observation
starts.

In order to discuss the solution of initial condition problemns in depth. we begin
with {irst-order svstems because they make the general principle clear, Second-
order and higher-order systerns tollow on from theve,

7.1 First-Order Systems

First-order systerus will be described by differential equations like {2.3) for N =
.:a.[ =1:

oo (8} - apyll) = Is"?|i“(if) - ,L'f[;".‘,(f) . (7.1}
The input variable x(€) and the outpul variable y(#) are only defined for £ > 0.

and the values {0} and %#(0) at the start of observation are kiown and can have
any value. The inital value of the output signal (0} is the result of the unkown
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past history of the systern. The input variable z{f) is given, and we want to find
the system respouse y(t) for £ > 0,

We start. with the classical procedure for solving initial condilion problems,
and later we will use the Laplace Lransform.

7.1.1 Classical Solution of Initial Condition Problems

The starting point for the classical solution to the problem described above consists
of calculating Lhe solntion of the homogenous problem and of a particular selution
of the non-homogenous problem. A general solution is formed from the sum of
the two, in which the previously open pararmeters are defined, so that the solution
fulfills the initial conditions, The following example shows this classical solution
for a first-order system.

Example 7.1

We simplify the problem by specialising the coefficients in (7.1} and examining
the differentiul equation

(t) - 2¢(t) = wi(l) +x2(t), £>40 (7.2)
I‘(l'} = mpooswgl, P80 e R (7 3)
y0) = . vo € R {7.4)

The homogenous solution iy, () wust [ulfl the differential equation oy, (t) =
2yn{t) = 0 and in this case it is

yilt) = C /T (7.5)

It can be easily verified by inserting it into the differential equation. ¢ is any
constant, and will be given a value later, by the inital condition (7.4}

To calenjate a specific solution y.(f) of the non-homogenous problem (7.2),
{7.3), we use the harmonic character of x{!) (see (7.3}). and write «{t) and y,{f)
fort >0 as

x(t) Re { gt} (7.6}
yslt) = Re{Y@-““""'*}. (7.7)

0

with the complex amplitude ¥ not yet determnined. [nserting into {7.2) yields
(2 + jwp )Y e = (1 + juwo )wge”™" . {7.8)
The complex amplitude is

Y = ﬁf 2o = Plwg)ag e’ @00 (7.9)
T
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with

3 / |+ (UJU ?,"}2 ) . -

f (wu} = V 1m @(u}u) = '-_u‘ctan(w(, ?.') - é.LI“('!T-«'i.Il(LQg 7/2) . (i', 10)
- o

Substituting in {7.7) gives a particular solution

s (1) = Plwo)mg cos {wot + Qwg)) {7.11)

The general solution ts obtained by adding the homogenous solution with the
yet undetermined constant € and the particular solution of the non-homogenous
problens:

Yt} = yplt) -+ y, (8} = C 7T 4 Py )ag cos (wol + B{w)) - (7.12)
It fulfills the inital conditions (7.4} for
C = yy ~ Plwgleg cos(Gwg)) . (7.13)
Finally, we have found the output signal

Y1) = yo e T+ Plwgzo [ms {wot 1 WOlwg)) ~ 9'2[-’{(:03(@(.;00))] . {714)
|

To assess this kind of solution, the tollowing poiats must be uoted.

e ‘The homogenous solution ¢an only be found this easily lor first-order gystems,
Tu the gencral vase we must first determine the complete set of characteristic
frequencies of the aysteny,

e The harmonic form of the input signial 2(t) was used o delermine the par-
ticular solution. For other inpul signals this can be much more ditheult.

Il prior knowledge of the charactoristic frequencies of the system is necessary and
ani input signal of harmonic form is advantageous, a method like the Laplace trans-
forin. that represents signals and LTT-systems by exponential frequencies sounds
ideal, We will show this in the next section, by comparing how a first-order system
is analysed with the Laplace trausforin.

7.1.2 Exiernal and Internal Parts of the Solution

To analyse o Hrst-ovder system with the Laplace transform we start with the
diflerential equation (7.1). For the inpul signal x{f) we do not take any particular
fanction, end instead we set the following requirements

e x(t) Is a right-sided signal, with x(t) = 0 for t < 0,
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@ x({} can be diffcrentiated for £ > 0,
e x(f) is of exponential order for ¢ — 2,

We can now be sure that the Laplace fraustorm of z(f) exists, although we nust
consider a possible step at ¢ = 0. so that the differentiation theorem (4.34) can be
used. If we only cousider the differential equation for t > 03, then 2(¢) = 2°(¢). We
can then use the differentiation theorem in the form (4.35) for the initial condition
problem.

g+ ooyt = KD+ Jr(D. £ 0 (7.15)
vl = w t=10 -
This leads to the algebraic equalion

ar[sY (%) — {0 + oY (8) = 3 [sX(s) — 2O + X (s). (7.16)

which can be solved for the Laplace transform of the output signal:

l.l’"jj_S + J.f.))u 1 .
¥Yis) = ——X{9)4+— () — (0
() 8+ o () a5 -k o (0] = et 0)]
. 1 .

= H{s)X (s} + ————la1y(0) — FLe(0)]. (7.17)

tr1 5+ Gy

We can already see i the requency-domain that the output signal consists of
two parts. The first part contains the inpul signal for ¢ > 0, weighted with the
transfer function ) .

H(s) = st (7.18)

a8+ ag

and is known as (he external part. The second part is given by the values of
the input and owiput signals at fime § = 0 and is divided by the dencminator
polynomial of the transfer function. The nuwmerator of the second part does not
depend on 5. We will call this the wnternal part. becausge as we will soon see, it
corresponds to the internal initial state 2{0) of the system. The output signal itsclf
is the inverse Laplace transform of hoth parts.

The resull of combining the two parts is clarified in Figure 7.1, The external
part is caleulated in the frequency-domain with Yee(s) = H{s)X(s), and the
internal part depends on a further transfer function G(s) of the systemn state at
L =1, AL the input of G{s), the initial state z{0) appears, which doees not depoend
on the complex frequency, but instead on a constant in the Laplace-domain®, In
the following section we will meet a procedure whieh allows us to determine G{s} in
a similarly simple way as H(s), without haviug Lo worry about the differentiation
theorem for signals with discontinuities. The combination of internal and oxternal
parts as shown in Figure 7.1 also works for higher-order systems as we will show
in Section 7.3. The initial state (0} is in that case. of course, a vector. and G{#)

TWe will see in Chapter § that this corresponds to a delta mopulse m the time-domaln.
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H{s) ~ 2 ”
X L1y o N v eoxn

Fignre 7.1: Clombination of the internal and exlernal part

7.1.3 Initial Values and Initial States

It is important Lo have a good grasp of the difference bofween the terms snatuol
vatue and malaod state.

¢ The initial value is the value of the oulput signal at Lime t = 0. For signals
with a step «t £ = (), this is the vahie of the right-hand limit »{04), regardless
of whether or not the plus sign i3 written.

e The initial state is the value of the wnternol states at time £ = 0. I can he
interpreted as the contents of the energy stores and is usually constant for
physical reasons, especially at £ = (0.

While the inirial value is the same for all different vealisations of a system. different
initial states correspond to different state representations of the same differential
equalion.

H a system is inttially at rest, then {0} = 0 and correspondingly Y5, () = 0,
and ¢ (8) = 0¥ £, The selution of the iuitial condition problem then only consists
of y(#) = Yo (t) and the initial value is y(0+) = g (0+). The initial value will
only arise when the input signal x{#) is turned on. On the other hand, if we have
an initial condition problem whoere y{04) = gy (0], this implies that the system
is initially at rest. We therelore say that these are nalurad initial conditions.

Example 7.2

Figure 7.2 shows a first-order system with the difforential equation (7.1) in &
direct form 1 siructure {compare with Figure 2.3). In contrast to having just a
differential equalion, we now also know the internal structure of the system. We
must not forget, however, that shere are many different structures thal represent
the same differential equation {see Chapier 2.5).

As we wanl to know the sibuation when the input signal is applied (at timc
== 0}, we express the oulpnl signal for this time point by the input signal «{0)
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and the ipitial state by #(0). The relationship can be taken from Figure 7.2:
. 1 .
() = {=(0) — L\'(}J(_D}};—ﬁl A+ Boz(0). {(7.19)
By rearranging we can obtain
ayy(0) — F1w(0) = z(0)[er) By — o] (7.20}
Putting this inko (7.17) vields

oy — oy
(k18 -+ g

Y(s) = His)X{s) + Gls)=(0) with Gis) = (7.21}

This shows that the internal part is determined by the initial state of the integrator
in Figure 7.2.

"0

f{f)‘., 1 s

- <y

ag [ = fo

Figure 7.2: First-order system in direct lorn T

Example 7.3

In order to further clarify the meaning of the initial state, we consider the
RC-cireuit from Example 6.1. T'rom the node equalion

1
0y =g = —w T.22
(i) — iz} rhe {7.22)
and the time constant © = R, the differential equation
Ty T4ty =W T {7.23)

follows iimmediately, and from that, nsing the differentiation theorem. we obtain

'Y
s7+1

ke

Note thal the content of the square brackets is the value of the voltage across the
capacitor

{2 (0) — w) (0} {7.24)

uc(t) = ua(t) — us(t) (7.25)
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al t =0, so we can also express the Laplace transform of wy(t) by ue(0k

st . .
Ups) = -——T7(5) + .

2(5) st+1 ils) st 1

Comparison with (7.21) shows that in this case the initial state corresponds to the
voltage across the capacitor at L =1{). -

If this initial state is eqnal to sero, the system deseription has the form (6.5),
that we know from bilateral signnds. To explain this, we consider the system from
the standpoint of & hilateral signal: when a right-sided signal is made bilateral,
and it is zero for < 0, the energy stores at t = 0 can have no non-zero initial
state, and we say that the sysiem is initially at rest. Whether considered as a
right-sided or a bilateral signal, for a systemn initially at rest. we get the same
result,

Tt can be secn in Example 7.3 that the initial state and initial value should not
be confused. If the capacitor is not loaded initially, (n¢{0) = 0}, the initial state
is clearly zero, but the initial value of the output is ug{0) = w0 (0).

Under what conditions is the initial value of the output signal zero, if the system
is energy-loss at £ = 07 To answeor this, we Integrate the differential equation {7.1)
from —o0 to 0, and obtain {compare (2.4})

ue(0). 7.26)

0 ]
v (0) + g / Yty dt = Sre(0)+ 5y / a{t) dt. (7.27)

If the input signal for ¢ = 0 is zero, awd the system is causal, this is also true
for the output signal. Both integrals then disappear, but the relationship for the
natural initial conditions of a first-order initial value problemn remains

(0 = 312(0). (7.28)

We have already obtained this result for the special case of the direet form 11
realisation in Example 7.2. when the initial state disappeared. From (7.28) it can
be read that () = 0 only when & = 0, rogordless of the input signal. Put
differently: a frst-order system with no direct, path from inpub to output{d; = 0,
Figure 7.2} and without execitation before time ¢ = 0. has an outpui signal y{0)
equal to zero. For ) # 0, the initial value {0} depends on the value z{0) of tLe
input signal (7.28).

Example 7.4

What signiflcance does the initial value have for systems which are not inkially
{t = 0} [ree of cnergy? To answer this question, we counsider the system from
Example 7.1 aud apply a bilateral sigial

F(EY = ag cosunyt, —ixs < 20 (7.20)
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and a unilateral signal w(t} = &(4), ¢ > 0 to it (7.3). The respouse §(1) to #(#) can
Le obtained, for example, using complex amplitudes. Its form can be Laken from
FExample 7.1. where we ensured that the general solution (7.12) was valid for input
signals thal can be differentiated. even tor t < 0. As the fuput signal consists of
two cigenfunetions of a LTT-system, the output signal §{#) must be made up of the
sane eigenfunctlions, and therelore vields from (7.12) with & =0

§{t} = Plwn o coslwot -+ Ofwn)) . (7.30)

The response y(£) (o the unilateral signal w(¢) has already been determined (7.14),
We express it here somewhat differently:

Yt} ~ Plag)zg coswgt + O(wg)) + lyo — Plwyrg cos &) e ™/ t=0.
(7.3}
I we choose the initial value g, u (7.31) to be the same as the value §{03) in {7.30),
the second part then disappears fromn (7.31) and for & = 0. §(#) = y{#).

This means that we can also deternine the response to a bilateral signal Z(#)
for ¢ > 0 by applying a unilateral signal z(t} = #(£)s{#), if the initial value y{D)
i sel equal to the response to 2(E) al time ¢ = . In other words, we choose the
initial value 4, so that it coutains the complete past history of the systewn, and
thins avoid transient beliaviour for 1 > Q.

7.1.4 Example: Initial Condition Problem with a Sinusoidal
Signal
We can now use the Laplace transtorm to sobve initial condition problems. In elec-

tical engineering, initial condition problems with sinusoidal signals are particularly
important.

Example 7.5
As an example we consider ihe exercise rom Example 7.1, which used Lhe
classical method of sclution. We take the Laplace transforma X (s)e-—cx(t) of the
input signal fromn Table 4.1 and then obtain with {7.17),

Yis) = Youls) 4 Vinds)
st 1 AR T o
BT AR L
= :_ :: HIE;% + H_}“; . w6 — 0] (7.32)
i 2

T 743
Sy - Mo ( j
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The output signal is given by the inverse Laplace transforn, lor which we treat
hoth terms separately. For the first term Y, (s) = H(s)X{s). the inverse trans-
form is casiest when we represent it as a partial fraction, and the calculation of
the partial fraction coeficients can be simplified by first of all representing II(s)
and X (8) with partial fractions:

R A _
H(S):a :0:]_4_‘?"@ A=sy —gp=—1
&= e, L Fo oY g -
o Ty c:X ( B - B* 1 (7.34)
X{s) = = 3 = + Zo B=
' % 4w LS — Juy 8 juig 2

From here the partinl fraction coefficients ' and I} of H{s)X (s} follow immediately

g ¢ D n* .
Hi{=)X (s} = o + (7.35)
S B &= jwp &4 g

1 : g;l'-() —
D = (s jwo)H($)X (8)lmyu, — H(jun) By {7.37)

o 1+ Jws

C 2 24wt

The inverse transformation is now easy to perform using Table 4.1:

Yoxt (£) = LTHH() X (8)} = Ce™ 2T 4 petont 4 Dt emrenl (7.38)

In order to bring the complex conjugates together, it is usefid to express the coef-
ficients D by their phase and magnitude. Then i will oconr to us Lhat H (e by
is identical with the complex amplitude ¥ {7.9). That is no coincidence. as the
conplex amplitude of the ontput signal for a sinnsoidal input signal corresponds
to the value of the transfer function at this location. The magnitude and phase of
H {gwy)rg are therefore the same for Plwg) and O{wy) (see {T.10).

Ut (o o)

| (0] (wy) \/ 44 (wyr)? ( )
arg{H{jwel} = Ofwg) = arcranfwy ) — arctan(uwy z/2) . {7.40)
With I
D = |H (jun)[e?10) - 570 {r41)
we ohtain
e () = Ce CET | H { Fen Y en cos{wat + Q). (7.42)

The internal term is obluined by inverse transforming the second teym in (7.32):

11— ] H  J—
Yo {) = L7 { 0 ~:::nJ} = [yo — zje 7. (7.43)

8o e
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With (7.36). (7.43) it now follows that the output signal for £ 3> 0 is

TS _:—~2t_ff + |H{juwo iz coslwpt + (we)) = [y — 2ple T
X3 i, sttt

internal part
external part '

(7.44)
To conclude, we express this result in the sawe [orm as the result of the classical

solubion {T.44). The terms with xq e~ 2T are collected Logether, giving

[1 o 2 j| [2 + (wu T}
I (@] T 4 (wor)?

and the result s then put inte (7.44). The Lual result corresponds to (7.14).

] = Re{H(ju0)} = Plun) cosOfwy)  (7.45)

For a sinugoidal input sigual, as considered in the previons example, we can
further divide up the external term of the system response so that (7.44) consists
of three parts

2y
4+ (UJ(] Z')

transient part

y(i} = 5 T+ | H () |F(1<U‘*(vu‘uf + ‘C)(wu)} + LZUU - 1‘0}@ e

excitation part det.a,) part

{7.46)
These terms can be interpreied ag follows:

a The transtent part determines how the system responds to an input stariing
at £ = 0. It is formed from the characteristic frequency of Lhe system, the
complex fregquency §a (AceS=fo-eA/(s — 5..)) and the value of the Laplace
Lransformn of the input signal X{q,,c ) at the system’s characteristic froquency.
For stable systems (Ref{sa.} < 0), this put decays over time.

» The excitatron port is the part of the input signal that appears at the output
of the system. It determines the steady-slalte response of the system and
negleets the single-sided character of the input signal. {t is identical o the
result obtained by wsing complex amplitudes. The excitation part is defined
in termns of magnitude and phase of the frequency response. They determine
the amplitude and phase of the output signal.

e The decay pertis identical to the internal part and represents the response
to the igitial state. Similar to the transiens part, it decays with the complex
frequency of the systen.

The transient part and the excitation part comprise the first terim in {7.17,
TA4) (LEH{S)X(s))). e the external part. The separation of the external part
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into transtent and excitation parts is performed by partial fraction expansion. The
pole of the system {5 = s,) delennines the transient part and the poles of the
excitation {s = +jwg)} determine the excilation part. As already mentioned above.
the decay part is identical to the second term in (7.17. 7.44), i.e. the interzal part,

7.1.5 Summary

The results of onr intensive invesligation of first-order initial condition problems
can be summarised by the following points:

e The Laplace transform alows the response of au LTT-systom to unilateral
gignals to he determined just as elegantly as with bilateral signals.

* Uge of the diflerentiation theorem for right-sided sipnals treats a step in the
input signal at ¢ = 0 as a pre-determined initial value of the output signal.

o The response to a right-sided signal can be split into an internal and an
external term.

¢ [f the input sipgnal is sinusoidal, the external term can he tarther split into s
transient part and an excitation part.

o [f both the diffevential equalion and the internal structare of an LT -gystem
are known, the internal term con be interpreted as the response of the system
to the initial state,

e The injtial state of a system completely summarises the effects of its past
history.

These resuits have been derived from frst-order systems but they also apply to
higher-order systems. In the following sections, we will show this for second-order
systems and general systems of any order in the state-space description.

7.2 Second-Order Systems
The differemtial equation{2.3) is used for second-order systems

oegff + oy = God 4+ Hd + Fye. {(7.47)
Analysis with the Laplace wransform uses the differentiation theorem for righe-

sided signals {(4.34). for the first and second derivatives, Tor ¢ > 0, 2(#) = ®(t),
and we obtain

fl

Lix}y = s£fa} - 2{0) = 5X{(s) — 2(0) (7.48)
L{F) = sL{d} — 3(0) $2X(8) ~ [s2(0) + &(1)]. (7.49)
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The bounds #(0) and #(0) are again right-sided bounds. Using (7.48. 7.49) on
{7.47) yields after rearrangement:
[o28% + vys + oY {5) — se0y{0) = (o0} + aap(®)] =

. 7.50
Ef)’g‘;‘z -+ .61'9 -1~ r‘f{)}X(‘u) - hﬁgT(D) — i’_ﬁ'jllf{_{]) - aizl(o)] . ( )

Tor a unique solution we require two initial conditions, the value of the ontpul
signal y{0) and its first derivative §{0). The corresponding values x(0) and &(0} of
the input signals are known. We can then solve (7.50) for the Laplace transform
of the miknown solution Y (s} and obtain with the systew function IT(s)

I 3y e + ;'3'[ s+ 3 )
Hig)=m -~ 5
(s) 282 4 8+ oy (7.51)

the solution
Yis) = H{s)X(s)+
{7.52)

S[i’..t;z-y(_()) — ;32.{:[0)] + {Lfl’l.?,-‘({)) 4 0:2?}(0) ~ Buld) — B (0)]
{.}232 4y 3 oy .

The output signal y(¢) in the time-domain is found from (7.52} using the inverse
Laplace transform. The first ferm gives the external part of the system response
and the second Lerm gives the internal part.

If the internal structure of the system is known., we can represent the internal
part by the initial states. Depending on the structure of the system, different
expressions are obtained. The relationships are especially stmple with direct form
1. which is shown in Figure 7.3 for the second order differential equation (7.47).
fu contrast Lo Fig 2.5 for order N systems. the original notasion (ry,. 5 ) for the
coeflicionts is kept. At the outpue of Figure 7.3, we can vead that {compare (2.18)
for N =12)

gll) = ! 2 (t) + iji.mr) (7.53)
453

Al the middle swmming node {compare (2.15) for NV = 2)
LY = 2ot} + Bre(t) — oy p(t). (7.54)
Differentisting (7.53) and substibuting in (7.54} yields
A _3 ,8‘ . 1 R
g1 = Za(t) + E2 () + —z9(t) — —~-;{t} {7.55)
s g fal

From (7.53) and (7.55) we solve for the states when £ =0

=1{)
2(0)

any(0) — Faa(0) (
{03 + (0 — thz(0) — G (0. (T

It
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x(1) - » ¥

i

¥

o =

'l

bl iy

Figure 7.3; Second-order system in direct form 11

We can now express the cunibersome terms in (7.52) much more simply using both
of the initial states:

Y(s) = H(s)X(s) + 2D+ 20 (7.58)

82 4 oo 8 + oy

Replacing initial values by initial states is also possible with other structures.
although the resulting expressions are uot always as simple as in (7.58).

7.3 Higher-Order Systems

The Laplace transform bas so far been shown te he an effective tool for solving
initial condition problews for first- and sccond-order systems. It can be nsed
in the same way for higher-order systemns. For this purpose, the differentiation
theorem as in (7.48) aud (7.49) must be extended to higher derivatives. From
the differential equation of order N in {2.3). we can obtain an algebraic equation
that leads to a system function H{s) with a polynomial denominator of order N.
The internal part contains N initial values y(0). 5(0). 4(0). .. ..y =1(0). up to
the (N —1)th derivative and also the eorresponding values of the input signal, As
the expressions thal arise rapidly become involved, however, it iy helpful to switch
over to the state-space description (sec {2.40) to (2.43)). This can be readily done,
when the interual structure of the system is known. Otherwise, the matrices A.
B, C. D can be written down from the coefficients of the differential equation
for direct forms I, IT and 1[[. The arhitrary states thus oblained have ng physical
meaning, but the advantage of the shiuplified notation still remains.
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7.3.1 Solution of the State-Space Differential Equation

We start with the order N systemn with one input and one outpat that is given by
the state-space description {(2.33}, (2.34). [t could have any internal structure, and
50 also any coctficients for matrices A, B, C, D. To use the Laplace transform on
this system of N first-order differenlial equations we only need the differentiation
theorem for the first derivative. Used on the state vector 2{1) it is

C{z2{t)} = sZ{s) — 2(0). (7.50)
The Laplace transform heve refers to the individual components of the state vectors

Zy(s)
Ll =Z(s)= | with  Zi(s) = £{n(Dy.  (7.60)
Lpls)

The initial states arc collected together as vector 2{1)?. The state-space description
in the time-domain (see (2.33, 2.34}) becomes

il

s&(s) — (M)
¥(s)

AZ(s) + BX(s) (1.61)
CZ(s) + DX{s) (7.62)

i

in the frequency-domain. The differential ecquation then becomes the algebraic
equation system (7.61), which we can solve lor the slate vector translorm Z({s).
Collecting the terms with Z(s) together, we notice that sZ(s) — AZ{s) = (sI —
AVYZ(y), where I is the unity matrix. We obtain

Z(s) = (sT— A) ' BX(s) + (sT~ A)'z(0). (7.63)

The inverse of the matrix (sI—A) must stay on the left because the matrix produet
s not corpmutative,

By inverse Laplace trausformation {7.63), the time behaviour of the state vari-
ables can be determined i it is of interest. Here we are looking for the output
signal y{t). however, and s0 we smbstitute (7.63) into {7.62). The resuls is

Y (s) = H(s)X(s) + G{s)2(0) (7.64)

2At first glance. il is surprising that for the state z(¢) we use the differentiation theorem for
functions discontinuons al £ = 0 {7.59), while ()  usually continuous for physical rrasons.
However, we do not kaow z(¢} for £ < 0, so we arbitrarily set 2{f} = 0% £ < 0 and let the skate
at tune &= ¢ unp Lo z(0).
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with system fanction A{s) and column vector G{s)

Clsi-A)"B+D ] (7.66)
ClsI— A)~'. ‘ (7.66)

His)
G s5)

i

'the equation (7.64) has the same structure as (7.21) and (7.58). it is just the
initial states combined as a vector. Equation (7.65) describes in a general form
how to caleulaie the transfer function from the input Wo the output of a state-space
structure, fromn the matrices A, B, C. D, This problem has already been dealt
with i Chapter 6.5, G(s) can in any case be interpreted as a vector of transker
functions. The individual components deseribe the transfer behaviour from the
input. of the individual integrators to the output of the whole system. ‘The
expression 5 G{s) is the vector of the trapsfer functions from the state variables
Z{s} to the output of the whole syslem, that arise at the integrator cutputs,

The tportant equation (7.64) is Hlustrated in Figure 7.4. The response of the
ANth order ET1-system with initial conditions to an input signal w(f}c-—eX(s) is
obtained by computing the response X () - H{s)w ~oyue(#) of a syslem indially
at rest and adding G{s)z(0)e-—oyin (£). The N initial states z(0) must be chosen
sich ihar the complete solution y(f) =y (8) + i () fulfills the inilial condilions.

i

Gis)
Yinels) @0 ¥t}
o H(s) e -
x(f) o—e X(s) Yox(s) 80 Yoy (D) ¥

Figure 7.4: Solution of initial condition problems in the Laplace-domain with (7.64)

Caleulating the system function H(s) with (7.65) secms to be contradictory:
while the system fanction is clearly fixed by the given differential equation {see Kx-
amples 6.3 and 6.4), in (7.65) matrices ocour that depend on the chosen state-space
model. Does the transfer function thercfore depend on the internal structure? T
show that the transfer function really is the same for all equivalent state-space
structures, we insert the state matrices of an equivaleni structure {2.47)—{2.50)
into {7.65). and obtain

His)

"

CHEI-AY'"B4D = CET ' T - T AT ' T 'B+ D =
CisI-A)'B+D. (7.67)

The transformation matrix T disappears when the systers function is caleulated
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and so all equivalent state-space structures have the same system function. The
matrix expression on the right-hand side (7.65) is said to be invariant for similarity
transforinations. However, the vector of transier functions G{s) from the states
to the output depends on the stricture of the system. A similarity transformation
changes it to

Gi(s) = CHI-A) ' =CTT T - T 2AT) =
= C{sI-A)'T =G(«)T. (7.68}

{7.67) can be rade mach clearer by manipulating the block diagrams in Figures 7.5

__I\D

i1
Figure 7.5: Block diagram with transforined system matrices
J D
<N
-~ B =R i C
x(t) i — e y(®)
L
A T 1

Figure 7.6: Moving the translormation matrices

and 7.6. Tn Figure 7.5 the maatrix mulliplications are fivst represented by cascading
multiplications by A. B and € with T and T in accordance with {2.17) - (2.50),
The linearity of T and T~ allows these blocks to be shifted as shown in Figure 7.6,
without changing the transler behaviour of the systen:. In the central path of
Fignre 7.6 . we see the transfer function TsIT ™1 = (ITT~! = sI, which does not
depend on T, We have now shown that H(s) does not depend on the similarity
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transtormation L', "Uhis is also true, as shown in Figures 7.9 and 7.6. for systems
with any pumber of inputs and outputs, G(s) can be interpreted in Figure 7.6 as
a vector of transfer functions [rom the input of the integrator to the output and
(7.68} can be directly written down from this.

We will clarify the connection between determining the system funetion from a
state-space structure as in {7.65) and determining it from a differential equation,
with the next few examples,

Example 7.6
A firsi, order system is represented in direct form I in Example 7.2. The
state-space doseription can be derived directly from Figure 7.2:

o 1
i o= —4—x (7.69)
(X ay
. Ay h
¥y = (,_‘}0 - r_m——) z—x. {7.7%)
] )
The matrices of the stae-space description in this case have dimension 1 x 1
ex 1 a3y ~ o #] _
A.-.:-——U. = . 112 I}.*l. Dzu, (?.,“)
44) {x) (4 81 14

From here we obtain the same result with {7.65) and (7.66), that we obtained in
{7.21) directly from the ditferential equation:

) -1 . ) N
o g — (.}:mjl g 1 I 1 ,3) ~ txpid Fil
Hi{s) = 2202142 A Z e met L
) 'y ¥ [t X [T ST L r¥1
. s + Jo
xS ooy
o 3o — e 3 I8 ardy — a3
Hs) = 1o = aglh s X - Mt — ol
: 3} ¥y &+ g
(7.72)

Example 7.7

The state-space description of a second-order system in direct form 111 (see
Figure 7.3) is:

. @ a2 — o :
By om b oy, 2T OV (7.73)
(¥ oz
. o 2y — i
e = .__.__{_).;;1 + —"“0 i l 2;1‘ {T?'i}
rey 4y
1 Ga -
y o= i g (7.75)

k3 A
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We write down the systom matrices:

A= L —0 Fy B i cvafd) - oy o
Qg | -ap U 2 1 oofy ~ ol

(7.76)
C=—jl ()I D——iaz.
o (83}
With
1 s ¥y (kg
(ST—A) = — [ } (7.77)
45 kp ka s
. i & &
((SI-A) = e 2 (7.78)
Qg8+ 5+ o | —gig (a0

and (7.65) the system function follows after some rearrangements. G(s) is then
obtained as
1
Gs)= ————1s 1 7.79
) cr38% by s + o [ ] ( )

and with (7.64) follows the result in (7.58).

For systems of any degree, the determinant of (sI -~ A) becomes the denomi-
nator polynomial of H{s] and G(s).

7.3.2 Determining the Initial State from the Initial Values

The equations (7.64) te (7.66) generate a conctse formulation of the input-output
refationship for systems of any degree in a general state-space structure. H a
divect form IT or 111 state-space desription is chosen, however, only 1o benefit from
the advantages of matrix notation, the initial state 2{0) is not available. It is
necessary therefore, to find the connection between the initial state and initial
values for systems of all dogrecs.

In order to do s0, we also use the advantages of the state-space description.
Fron the outpat equation(2.34} in the time-domain, we find through differentiation
and use of the state equations (2.33) at + =

y(0y = Cz{0) + Dax(0)
40y = CAz(0) = CBz(0) +  Dz(0)

#0y = CAZ%z(0) + CABz(0) + CBx{(0) +D3i(0)
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After the N — 1 derivatives of y{t) at ¢ = 0 have been caleulated. the results are
surmmarised in matrix form

y{0) = Wa{0) + Vx(U) {7.81)
with the vectors
z(0) y(v)
#(0) gt}
x(0) = F(0) .oy = #(0) (7.81)
.,I_.f_,"\’ —I}{U) y{;\"-].)({]}
and the matrices
C D 0 ] ... 0
CA CB 3] 0 e
W = CAZ V= CAB cB D .. 0
CAN-1 CAV?B CAY B CAN B D
(7.82)

Now the initial state can be expressed by the vector of the initial values ¥{0) and
x(0):

F(O} = W[y (0) - Vx(0)]. (7.83)

With (7.64) follows for the output of an LTI-system described by an Nih-order
differential equalion like {2.3). with given initial conditions ¢(0) to 'V =10}, and
the npul signal z(i):

Y () = H(s)X (s} + G(s)W—1[y(0) ~ Vx(0).. (7.84)

Example 7.8

As an illustration, we continue Example 7.7. The matrices W and V are in
this case

1 |k 9 - ag 0 .
W o= — oy . W= (7.85)
oy | ——— 1 e
[}
v D ool 1™ ) 7.46
CB D| | @h b 5 0 (7.86)

0‘-3

By substitution, we obilain the result (7.52), which has been shown hefore only for
a second order system. Here, it follows as @ special case of an Nth-order systeun.
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7.3.3 Determining the Internal Part in the Time-Domain

So far we have learnt two methods to determine the ontput signal of an LTL
system with a known right-sided input signal and known initial values: the clas-
sical method with a general homogenous and partieular non-homogeneus solution
{Section 7.1.1). and system aualysis using the Laplace transform (Section 7.1.2).
We will now examine a third possiblity. that falls sornewhere between the other two
methods. It can be seen as a special case of the solution using the Laplace trans-
form and is particularly simple o use. il a system has been given as a differential
equation and initial conditions at ¢ = 0;

N N

~ 'y L dbx _
Lfka@ = Zﬁg:?ﬁ (7.87)
7+=0) he=i}

YO = g i=0.0..., N-1.

if the numerical values of the coefficionts of the differential equation are given,
then this method is generally the quickest solution. It starts hy separating the
solution Into the external and internal paris

Y (s} = H{s)X(s)+ Gis)z(0) . {7.88)
Y::xt. (“’} Ymt (3}
As before, the external part iy the inverse Laplace transform of H{s)X ()
Yo (8) = H(8) X (5} . (7.89)
To determine the internal part
Yiae (5} = G(8)2(0) = G(s)W 1 y(0) - Ve(0}] (7.90
we have so [ar had Lo start with a defined systemn stoucture and

e either chioose the initial states z{0) so that they arc compatible with initial
values y{{),

» o additionally to G(s). determine matrices W~ and V.

Both possiblities are cumbersome for higher-order systems, il Lhe system model
only consists of a differential equation {7.87) and initial velues (see (7.52) for a
second-order system). In order to avoid this. we combine the advantages of the
Laplace transform with the simiplicity of the classical homogeneous solution (7.5)
in Section 7.1.1,

At first, we note that the order of the munerator of the {vansfer function G(s)
exceeds the order of the denominator by at least one. That can be illustrated i
two ways.



7.3, Higher-Order Systemnms 145

o The inverse matrix (sf — A)7! can also be expressed as the adjunet matrix
adj(s1 — A} and the determinant det{sI — A}
_ adj{sf — A)
ST Al i 7.91
( ) det(sI - A} (7:91)
The adjunct matriz contains the determinants of watrices that are formed
from (31 — A) by deleting one row and one column. Tor a system of order
N. the highest degree of muperator polypomial in s that can arise is N — 1,

¢ G{s) doscribes the internal feedback of the state in the systen through the
integrators and matrix A. This feedback cannot go aloug any path that
does not contain an inlegrator wikh the transfer function l The order of
the numerator must thervefore be less Lthan the vrder of the Elenon.;luat'.ar.

Froim the representation of (sT - A)7! it is evident from (7.91} that G(s) and

H{s) both have the same denominator polynomial, det{sI — A). in fact. We can
therefore represent the internal part by partial fractions:

f\.
- . — A o
Yin(s} = G{s)z(0) = E ;_:': . {7.92)
-
The poles s, are equal to the poles of the system function
A(s) .
H{g) = == 7.93
(s} B(s) (7.93)

with the denowinator polyuomial B} = dei(sl — A). The partial fraction ex-
pansion in {7.92) only accotnts for single poles for simplicity. The expansion for
raultiple poles has to be calculated according to (5.64).

In contrast to before, we will not determine the partial fraction coeflicients 4,
and with them the nnmerator polynomial of G{s}x{0) from the initial conditions
in amore or less complicaled way in the Irequency domain. Instead. we detormine
the indernal part in the time domain and obtain immediately from (7.92},

J\‘r
e(t) = Y At £ 0, (7.94)
=1

This defines the infernal part in a general form, but we still do not have the partial
fraction coefficients 4,. So we take the first N — 1 derivatives of the desived solution

:U(f] = E’;’e\ct(t) + ?Jint{t)

y(") = :{Jexl.(i') g Ll}im,(ﬂ

yt) = Jexelt) 4 Hnelt) (7.95)
yt_N—n“) = yii'"”(t) + yi['i\t’---ib{”'
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Her.e the external part yew (8} = L7H{H ()X (5)} is already known and so are its
derivatives. The internal part is given by (7.94), or another corresponding forn
in the case of raultiple poles. For simple poles, the derivatives of the interual pare
are

] T
Y () _-ZA e 150, (7.96)
=1
[n the solution y(t) and its derivalives we only know the initial values y;, i =
... Natt=10. That is sufficient, however, to set up a system of liuear equations
for the partial fraction coefficienis 4, from (7.95)

1 1 . 1 A Hoy — vat(u)
81 g e 5;_’\' _. k in - Qﬁxt(u)
.2 2 a Ag .
81 85 ... Sy _ - Y2 — Gexr(0) . (797)
Nt N—1 v L Ay (N—
8] 55 R e Yn—1 = 15’((..:,,- U{(_l)

After solving these equations by standard methods, we obtain the solution for the
output siglual in the lorm

Y1) = Yot (1) + 120(8) = LTHH{X(8)) + Z At £ 0. (7.98)

a==]

The advantage of determining the internal part in the time-domain is that we
only need the information thatl is provided directly by the problem, in the form
of {7.87).

e The system [unction H (s} can be obtained directly from the diffevedtial
equation (see Chapter 6.4}

e The external part is given by the inverse Laplace transform of the sys
tem function aud the Laplace transform of the input signal ye(t) =
£ H(s)X(5)}. The inverse transform can be carried out wsing the partial
fraction form.

e A general form of the internal part with unknown factors ean be oblained
from the denominator polynomial by partial fraclion analysis and inverse
Laplace tranformation.

@ The unknown [actors are determined so that the solution [utﬁlls the initial
conditions set in (7.87).

Most. of the elfort vequired to carry out this procedure is in the fornation of
the derivatives of the external part e () and in the solution of the eguation
systein. Both are velatively easy to carry out, if numerical values are givon for the
coefficients of the diferential equation.
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Example 7.9

We arc looking for the output signal y(1} of & first-order system for ¢ > 0, for
a given input signal x(f):

p+0ly=x. 0 =8 o) =101sini{, >0, (7.99)

The svstem function is

His) = ;;-"'2563 Re{s} > —0.1. (7.100)
The external part follows with
w(t) = 10.1sint-e(t) oo  X(s)= s-'l[i—ll Re{s} >0 {7.101)
by splitting X (s)H (5) into parlial fractions:
10.1 A Bs+(

Yoxe(s) = X(s)H(s) =

— - = + 7.102
(T FD{s+01)  s+01 s+ ( )
The coefficients are obtained eitlier as in Exanple 7.5, or by equating coeflicients
and solution of a linear 3 x 3 equation systemn. The result is 4 = 10, 3 = =10,
¢ = 1. Inverse transformation vields the external part:

Vel ) 10 B 10s + 1
o g+ 0.1 241 s2+1
. . . {7.103)
o] 8] 8]
Your{t) = We ™™ 0cost + sint ., t>0.

The general form of the internal part is obtained from the denominator of the
system function:

a
s+ .1

Viapls) = o0yl =ee™ 0 ts 0. (7.104)

The complete solution Is the sum of both parts:
WE) = Yo (1) F it (8) = (10 4+ a)e ™™V —~ 10cost 4 sint. &> 0. (7.105)
It fullills the differential equation and the initial conditions for @ = 8. The FVig-

ures 7.7, 7.8 and 7.9 show the internal part, the external part and the complete
solutiot.
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Figure 7.7: Internal part of the system response from Example 7.9
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Figure 7.8: Estrerpal part of the system respouse from Exaimple 7.9

100

30 —_— | pm g ey s T == ey - T
2% f\ U{t) = Ve (t) + Yine{F) |
hon
i [ g
wd LAY Lo oA s . A a
g VIO ANAANAN A AN AN
0_ V '. iJl i\, JJ| | ;J . ll|’ l.lll ; \"l i ,‘r 1 f’ '||1 J.'I 'l\‘ : lﬁ‘ jl ! ! ‘]ll ! 1.|.
| Y T A Y B b b ; P i
-10 l[ VoY U l\ fod ] ll'\f l‘\,’l i j ¥ U lll‘uf UI E
_20| 1 1 1 H 1 i 1 i .
O 10 20 30 40 50 B0 70 8O 80 100

Figure 7.9 Complete solution of Bxaraple 7.9

7.4 Assessment of the Procedures for Solving Ini-

tial Condition Probleins

Wa now know three procedures for dealing with L1T-systems with right-sided input

signals and known initial conditions:

1. the clagsical sohition of initial condition problems in the time-dona)

in (Sec-
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Lion 7.1.1).

2, system onalysis with the Laplace transform completely in the frequency-
domain (Sections 7.1.4. 7.2, 7.3.1, 7.3.2),

3. system analysis with the Laplace transform in the frequency-domain and
calculation of the internal part in the time-domain (Section 7.3.3).

The classical solution is certainly Lhe mosi compleated method in terms of caleu-
lation effort, as it works exclusively in the time-domain, It is difficult to guess a
particular solution for higher-order systems. If the Laplace transforin is used to
find the particular solution, the classical solution turns into the third procedure.

Systam analysis with the Laplace trensform completely in the frequency-
domain i the most snitable procedure if the internal structure of the sysiem
is known, for example, an elecirical or stale-space representation. Then the iu-
ternal part can be determined either from the initial state or the juitial values.
The transfer lunction G(s) and matrices V and W are obtalned directly from the
state-space represcntalion.

Caleulation of the internal part in the time-domain is suitable if the nternai
structure is unknown, and only the differential equation and the initial conditions
have hieen given. The nccessary caleulation steps are simple 1o catry out, if the
numerical values of the differential equation coefficients haye been provided,

7.5 Exercises

Exoercise 7.1

. . 1 . . :
A causal systom with transler function H{g) = Tl has the input sigual «o(f) =
—sin(wot) s{—1) + te 7 g(8). At L — —oc the energy stores in the system have
been emnpty.

a) Explain why only the external part and can determined in this case, and not
the internal part.

b)Y Give the response y(t) of the system.
Exercise 7.2
Solve the initial condition probiem

g(8) + 3y(t) = x(t). t>0
2ty =10 cos{dt). >0
y(04) =

with the ‘classical method'. Determine
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a) the homogenous solution y{#)
b} & particular solution y.(i)
¢} the complete solution y(1).
Indicate the internal and extornal parts of the solution.
Exercise 7.3
Solve the initial condition problem
PO +3yt)=xit), t>0
w(t) =~ 10 cos{dt), t>0
(04} = o

with the Laplace transforim. Consider the initial conditions using the differentia.
tion theorem for the unilateral Laplace transform (4.34}. as shown in Section 7.1.2.

Determine
a) H(s)
by ¥(s}
) y(®) for £ >0
Exercize 7.4
Derive equation (7.16) from (7,15} using the differentiation theorem of the Laplace
vrransform (4.34).
Exercise 7.5
The following first-order systom is given ag a block diagram:

X1 )

0.5 - 4 e

£

=2 | c
ety = e(t)-(1—t) +elt-1}{t-1)
(L
Determine

a) the initial values y(0—) and y(0+).
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b} the output signal y(t).

Exercise 7.6

The tollowing sccond-order system is given in dircet form I

x(8)
e —— 2
() = &lf) — e{t —2)
g (0) = 2a
2 = 2

a) Determine y(t) with (7.58).

y()

-3

b) Can (7.58) also he used, if the block diagram is also given in direct form 117
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8 Convolution and Impulse
Response

8.1 Motivation

In Chapter 6 we gave the fundamental relationship

Y{s)= H(s)X(s) (2.1)

in accordance with (6.5) between the input and output signals of an LTI-system,
The system function H(s) and the fransform of the inpus signals X(s) stand
adjacerd, as Laplace transforing. They are even interchangeable, With our ciurent
knowledge, however. these seein to be two completely different kinds of functions.
X(s) is the Laplace transform of » function of time and can be determined from
the iupulb signal (see (4.1)): X{s} = L{x(t}}, but the system fanction H(s) is
obtained. in contrast, from the given sysiem maodel in the forn of a differential
aguation, an eleetrical network or ansther forin of notation. In spite of this obvious
difference. however, H(s) und X(s) can take the same form. as we will show in
two shork examples.

Example 8.1
The fHuction of time

w(t)y = ae™™z(t), «€R, a>0

has (see Example 4.1 or Table 4.1} the Laplace transform

X(s8) = £{x(t)} = ,,% , (8.2)
)

Example 8.2
The RC-network from Figure 8.1 has transfer function
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i 1
Y{s) e T a 1 1 _
H 5] = = e - = = N == e o — 8.‘
(=) X(s) g + ] i 1 s+ “=F T &me (83
s r

Clearly the Laplace transform of the signal x{f) = ae (1) and the sysiem
function of the RC-circuit have the same form. This leads us to assume that
velationships exist here that we have not ver discovered. Tn order Lo shed sowe
light on these relationships, we will first ask some questions,

1. Can the system [unction H(s) be assigned a function of time h(t), such that
H{s) = L{h(t)}?

2. Is it possible Lo excite a system with a particular inpnt sighal that preduces
the time funetion k(#) as the output signal? Whal would this special input
signal look like?

3. Can a system with system function H(s) also be uniquely identified by the
corresponding function of tine A{t) if it exists? What does the function A(t)
say aboul a system?

4. Is there an equivalent relationship to Y{s) = H{(s)X () in the time-domain,
between (i}, 2{l) and L{1)?

We will answer these questions in the following sections.

8.2 Time Behaviour of an RC-Circuit

8.2.1 System Function

To approach the answers to the above guestions, we consider in this section the
RC-circuit from Figure 8.1, with the system fupction (s} given in (8.3). First of
all we 1se the inverse Laplace tvansform on the systern function H(s) and obtain
the inverse of (8.2}

ht) = LTHH(s)} = L1 {——} = ae" M= (t) . (8.4)

Figure 8.2 shows the time behaviour.

By inverse transforming the sysiem function H{s), we have assigned it a fune-
tion of thme A(t), although we do not actually know what it means. ‘laking a
right-sided function for A{F) is al this time arbitrary as we have not yet specified
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R
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IFigure &.1: RC-eirenit with rectangular imnput signal
I ] h(?)

1]
7
A

\
r

Figure 8.2: Time behavionr of the function k(f} from equation (8.4} (¢ = ,—}.)

a region of convergence, but we will give a justification for this choice later, for
physical reasons. All the same, we can now answer question 1 in Section 8.1, with
yes,

8.2.2 Response to a Rectangular Impulse

To explain the meaning of the funerion h{t), we evaluate the response of the RC-
circuit o a rectangular tnpnlse z(t) shown in Figure 8.3. The function of time
and its Laplace transform ave

i
2(t) = § To 0 e X(s)= = (1-e=T) . (8.5)
0 otherwise iy
x(ry
1
Ty
To ~

Fignre 8.3 Rectangular impulse
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From the raethods in Chapter 6 we obtain the Laplace transform of the output
signal ¥ (s)

K} &

Yis) = H(s)X(5) = - FasTy

(1 - ¢™ho) =

T

and from the inverse Laplace transform, we obtain the output signal (1) iself

a 1, 1 {1 ! }(he‘*"’“’] (8.6)

1 _ 1 .
R i
I —ip? .
ﬁ-[l—-e"“j 0<i<Ty
= i [ AT g (SvT)
- e -l]er*‘” Ty <t

T 0%
0 otherwise

Figure 8.4 shows the behaviour of y(#) for a certain value 7Ty,
¥erTy

R [ TR

™
f

n

TU To+ 7T f

Figure 8.4: Response of the RO-civenit to a rectangilar impulse

8.2.3 Response to a Very Short Rectangular Impulse

We now vary the width of the rectangular impulse at the input and investigaie
the effects on the output signal. Figure 8.5 shows varions rectangle impulses z:(1),
1=1,2,3.4 from {85) for the valnes Ty = 1; 0.5; 0.2; 0.05. As the height of Lhe
rectangle is the reciproeal of the widtly, all of the itnpulses have unit arca.

The corresponding output signals (¢}, © = 1.2. 3.4 are shown in Figure 8.6. It
seerns as though lor smaller and sialler values of 7y, y(f) becomes mare and more
similar to the form of k(t} shown in Figure 8.2. 1n fact, the lrst term (0 < ¢ < Tp)
becomes shorter, and the form of ¥(¢) becomes mainly defined by the second term
(Ty < 1). With the limit 75 — 0,

puth

() = T%r_;}o'— T-le_“"'a(t} = ae”Me(t) = A1) . (8.8)

L



8.3. The Delta Impulse

101 x(n
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»
0 3 > 1
0 05 1 15 2

Tigure 8.5: Various rectangnular impulses with unit area

F )
2 }‘4(”

L

Rty

-

it}

O G5 H 1.5 2

Figure 8.6: Response of the RC-circuit to different rectangle impulses

Before we answer the second question in Section 8.1 with yes. we need some
tnsight into the nature of the input signal (). that produces the response y(t) =

h(1}.

8.3 The Delta Impulse

8.3.1 Introduction

In order to determiine the faput signal x(#) that leads to the outpul signal y(t) =
(¢}, we will try Lo use the limit Ty — 0 directly on the rectangular impulse «(#)
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frou (8.5). The result is called the delta impulse 3(¢)

lim x(t) = 8(¢) . (8.9)
Th—0
It is also known as the Dirac delte funchion, Dirac mmpulse and unat empulsce.
The delta impulse §{t} is not a fanction in the usual sense, Atbempting to
define 4(1) by a rule that assigns a value §(1) Lo every time point ¢ leads to a
function that takes the value zero for ¢ # 0 and grows beyond all limits at ¢ = 0,

The easual formulation
0 for t#0
8(1) = { 7 (8.10}

oo for =10

although not wrong, is of little use as it docs not explain how 8{} can be mathe-
matically combined with other tunctions,

A mathematically precise definition of the delta impulse as a reliable function
for which every value of an independent variable is assigned a function value is
not possible. It is necessary to usc the idea of distributions instead [17, 19]. We
will refrain from a mathematically thorough formulation of the delta impulse and
related distributions. and instead we will illustrate some important propertics
that will be nseful when dealing with signals and svstems. The delta impuige
will be dealt with using the analogy of infinitely thin and infinitely high rectangle
impulses.

8.3.2 Selective Property

The principle for use of the delta impulse amd other distributions is that they
are not described by their undetermineable properties, rather by their effects on
oiher Tunctions, Instead of describing the delta hnpulse by an assignment (for
instance {(8.10)}), we see whether the value of the integral

f F80) dt

describes the effect of the delta impulse on the function f{t}. First we abandon
the delta impulse in favour of the rectangle impufse x(t) from (8.5). evaluate the
integral and carry out the limit Ty — 0. With (8.5},

e T
: L[, _ F(Iy) = F(0) o
_j Fey(e) dt = oo ‘ﬂ/j(t)dt == (8.11)
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where F{t) is an antiderivative of f{¢} (¥'(t) = f(#)}. The limit Ty — 0 leads to
the differential quotient of F{t} at ¢t = 0 and yields

Py -FO) .
Jim, [ S0ttt = fin SRE S 0] =40 6
With {8.9) we obtain
fj'(i,)ﬁ(t}dtzf(l}). {8.13)

Fhis relationship describes the selectwe property of the delta impulse. [t means
that the integral of the product of a function and the delta impulse removes all
tunction values f(¢) for ¢ # 0. and selects the value f(0). Note that f(£) must he
contiviuous at £ = (.

Figure 8.7 describes this situation. The delta impulse is represented by an
arrow pointing upwards at ¢ = 0. Il means thal 8(2) disappears lor ¢ # 0 and
grows heyond all linits at ¢ = 0 (compare with {8.10)).

i Lol 4

Figure 3.7: Selection of Lhe function vahie f{G)

IFfi) =1 Vi we know immediately from the selective property (8.13) that

]

‘ / S(tydt =1, (8.14)

This result is clear if the delta impulse is imagined to be the limit value of a wnit
area rectangle. We also say that the delta impulse has an ares or betrer, a weswght
of one.

The delta impulse is not restricted to selecting a value at ¢t = 0. in fact, it
can be used {o select any point. In the same way as iu equations {8.11) to (3.13)
follows

[ 505~ ) = f0) (8.15)
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This general form of the selective property is shown in Figure 8.8.

(1)
S

)

Figure 8.8: Selection of the function value f{tg)

The selection property is the most important part of the definition of the delta
impulse in distribution theory. With its help we can show all of the important
properties of the delta impulse.

8.3.3 Impulse Response

Before considering further properties of the delta impulse. we will surmmmarise the
results obtained so far. They allow us to answer the second question in Section 8.1:
it 75 possible to cause the RC-circuit depicted in Figure 8.1 to produce the function
h(t) at the output. The input signal that does this is the delta impulse 6(¢). h(#)
is therefore called the impulse response to the RC-circuit.

The function h(t) = £ '{H(s)} that was previously anonymous, is slowly re-
vealing itself to be a powerful tool in identifying systems, but to further investigate
its properties we need more information about the delta impulse.

8.3.4 Calculations with the Delta Impulse

The following derivations of calulation riles for the delta impulse depend on two
principles.

¢ The delta impulse can only be dealt with when it is within an integral. Its
properties can be expressed in terms of the effects of the selective property
on other functions of time.

e Calculations with the delta impulse must be consistent with the calulation
rules for ordinary functions.

We will investigate the properties of delta impulses using these two principles.
Another possiblity would be using rectangle functions of width Tj and the limit
Ty — 0, as we did when deriving the selective property(see (8.11) to (8.13)). Using
this limit is cummbersome, however, so we will stick with the elegance of the selective
property.
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8.3.4.1 Linear Combination of Delta Impulses

The most eletnentary property of delta impulses is their behaviour when added atd
wmultiplied with factors, i.e., ln expressions of the form ad(t)+-bd(t). The properties
of these linear colnbinations can be investigated using the selective property

t

./’ lad (&) + b F(E)ek [5(t t)dt =+ / alty f(e)dt

(Lf((]) +46f(0) = {a i 10y . (8.1G)

‘T'he lincar combination ad(!) + bd(#} has the same effect on a function f{f) as an
individnal delta impulse (o -+ b)d(t} with weight (a + f). Therefore

“adl) + B(E) = (a4 BY() (8.17)

8.3.4.2 Scaling the Time-Axis

Sealing the tine-axis occurs when the unit of time is changed or with norinalisa-
Lion, It may seem thai the della impuise is not affected by such operations as it
% zero except at £ = 0. Attompting to derive the properties of the delta impulse
from ifs degenerate time behaviour is deceplive. however, as we will show in the
[ollowing investigation using the selective property.

Ter explain the properties of a delta impulse with the argument gf. we start
with {#.13) and with the substitution z = af, ¢ € IR, we obtain

] dlat) f(1)df = II_ ] ( )dr— ﬂf((]} {8.18)

Taking the magnitude of ¢ is necessary, which is clear if the subslitution ¢ = af is
carried out with different signs of a.

The delts impulse §{at) hm\ the same effect on the function f(#) as a delta
irpulse »——5 (f) with weight —I Therefore,

!

%{ai) - 75( | \ (8.19)

Delta ninpulses with weighting factors are depicted as a vertical arrow showing the
corresponding weight. The scaled delta impulse [rom {8.19) has the representation
shown in Figure 8.9.

From (8.19) it is immediately yielded when a = — [, that the delta impulse is
even, s0

B(t) = 5(—t) . (3.20)
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N

Figure 8.9: Scaled della impulse

8.3.4.3 Multiplication with a Continuous Function

From the selective property,

[ swstae= [ soswa=rw). (3.21)

As all values of f(t) at ¢ # 0 are removed, mualtiplying a funetion by a delta nupulse
correspotuds to weighting the delta impulse with the function value at £ = 0.

F{(E) = F0)a(¢) (8.22)

This staternent i3 only true - just like selective property (8.13)  for functions f{#)
that are continuous at ¢ = 0. In particular, the product of two delta impulses
#{t) - 3{#) is not perminted,

8.3.4.4 Derivation

The investigation of the delta impulse with the selective property can he expanded
to other properties, for example, forming a derivative. Differentiation of 4(¢) by
forming the differential quotient is of course not possibie, as the delta tmpulse
cannol he differentiated. Despite this, a comparable operation can, in fact, be
used on distributions. To distinguish this from differentiating ordinary functions,
however, the term derwation is used.

The derivative of the delta linpulse has the same notation as the synibol for
a derivative with respect to time, written 4(¢). To explain what should be un-
derstood by this, we will again use the selective property. Under the integral, the
dertvative of 4{t) can be transtormed using partial integration of the corresponding
continuous function, and the selective property of the undefined function 3(t} can
be represented by the effect of a delta impulse §{1).

vl [ )

/‘ S F(E)dt = a‘(r)f{t)iio - f SO f(dt = — f(0) . (8.23)

—G —n
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As the term 6(¢) f(¢) disappears for ¢ — oo, only the negative derivative of f(f)
at t = 0 remains. We can interpret the derivative §(t) as a distribution that forms
the value of the derivative — f(0) from a function f(t), using the selective property.
The derivation of §(t) is revealed by its effect on the continuous function f(¢)

Unfortunately we cannot use rectangle functions with a limi¢ to illustrate (‘5(t)1
ag they are not differentiable, but we could, however, have introduced the delta
impulse as another impulse function with a limit. We only chose the rectangle
function because it was particularly simple to integrate (8.11).

The corresponding limit for a bell-shaped impulse function d(t) with charac-
teristic width T is illustrated in Figure 8.10 (top). In contrast to the rectangle
function, the derivative d(t) of the bell-shaped function can be formed. The limit
for T — 0 then leads to the derivative 8(t) of 8(t) shown in Figure 8.10 (below).
Because of the double impulse upwards and downwards it is also called a dou-
blette [19]. Tt should also be emphasised here that the graphical representaion
with arrows on the right-hand side of Fig 8.10 is for illustrative purposes only. An
exact description of distributions is only possible using their effects on ordinary
functions (see (8.13) and (8.23)).

d(t) 4 5(1)
hm d(1) A
T— 0
d(t) i (1)
lim d(1)
T— 0

Figure 8.10: Graphical illustration of §(¢)

R

Higher derivatives of §(™)(t) can also be introduced in the same way as S(t).
They form the nth derivative of a function f(t) at the point ¢ = 0 (with a change
of signs where appropriate)

o0

/ S () f(t)dt = (—1)" F(0) . (8.24)

-3
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By choosing certain functions f(t). different relationships between the delta im-
pulse 6(t) and its derivatives can be obtained. Tor example, from (8.23) we let
f(t) = —t, and equating the integrands we obtain the interesting relation

—t3(t) = 8(t) . (8.25)

As §(t) is an even distribution and —t is an odd function, & (t) must be odd:

5(—t) = —8(t) . (8.26)

Of course. we could have guessed that this was the case from Figure 8.10.

8.3.4.5 Integration
We will consider integration of the delta impulse as the inverse of derivation

/(5 Yz = /r} o)e(t — zidr . (8.27)

The inclusion of the step function £(t) makes it possible to form the integral with-
out a variable upper limit. The integrals appearing within the selective property
can be interchanged, and then.

oyde | f{tydt = ]C 7 §(T)e(t — o)dz f¢)dt = (8.28)
= fé( z) / e(t — ) f(t) dtdr = ] &(z) ]f () dtdr = /j (t)dt .
s i ~oo -

The same effect on a function f(#) can be achieved with the step function ().

however. ‘
/ (1) f(8)dt = / Flh)dt . (8.29)
— X 0

We can therefore identify the integral over the delta impulse 6(¢) as the step
function &(t)

/ dryde = el(t) . (8.30)
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Reversed. the della impulse is the derivalive of the step function
£{ty = 6(t) . (8.31)

Tigure 8.11 shows the relatiouship between the delta impulse and the step function.

Delta impulse 4(¢) Step function &{¢)

-— g(t)

1 8(1) d | et

4 | ! —————
£
S é(r)dr

-
—e e [

Figure $.11: Della iinpulse and step function

8.3.5 Using Delta Impulses

The caleulation rules we have just learnt show that the delta impulse can be dealt
with almost like an ordinary function. With this extended repertoive of functions,
many problewns can be solved more elegantly, where before, it was cumbersome
using exclugively ordinary [unctions. We will exaniine Lwo such examples.

Example 8.3

Figure 8.12 shows a sigual 2(t) (top lelt). that cannot be differentiated because
it is discontinuous al one point. Forming a derivalive in the normal way is not
possible. U the right-sided and left-sided limits of the differential quotient {(not
the function iself!) are aqual at the poinl of discontinuity, the signal x{#) can,
however, be represented as the sum of a function thal can be differentiated and
the step [unction (Figure 812 top right). The step height a corresponds to thoe
difference at the discontinuity. With differcntiation of the continuous part and
derivation of ihe step function, the derivative of the continuous part and a della
impulse with weight « is obtained {Figure 8.12 bottom rvight). Both teras can
be put together to give the derivation of the discontinuous signal. which has oo
derivative in the nonual sense. The discontinuily with step heiglt o appears in
the derivation as a delta impulse with weight a (Figure 8.12 boktow left )
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Xk r ] & e(t-T)
NN
N N
| !
| |
. N l
signail with discontinuity e SuM Of two functions that can be
i differantiated
- A i 4 |
x(f) | )
!
|
. - 1 e -
T\ S :

Figure 8.12: Analysing signals with discontinnities

FExample 8.4
The equation for the mwotion of a puck that slides on a frictionless surface comes

direetly from the formula Force = Mass x Acceleration:

1
glt) = —ull) . (8.32)

where (1) is the force on the puck, m is its mass and y(¢) is its displacement {see
Figure 8.13). Doth force and displacement are independent quantities,

force x(t} 7 ”L"
7
s, »”/
x///
ey -

displacement y(1)
Figure 8.13: A puck sliding on ice

I the puck is wmiformnly seb in molion atl ¢ = 0 by an jce hockey stick, the
displacemnent increases proportionally with time (Figure 8. 14 top). The force eould
be found by differentiating the displacement twice, if y(¢} could be differentiated.
Because of the step at + = 0, however, Lhis is not the case, and again we need
the belp of distributions, Derivation of the displacement yields the velocity in the
form of a step function. Repeating the derivation then yields force in the form of
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a delta impulse. The delta impulse heve is the idealized strike of the puck with
the hockey stick.

chserved displacement

BGR .
y(t) = ( for ¢t <0
g = gt Tor I >0
-
velocity
¥l
'Ul-} [ s e y(t) = ‘Uﬂs{{)
-
force x(f)
1 Uy x{f) = mglt) = mun; 6{t)
' -

Iigure 8.14: Displacement. velocity and applied force of a sirnck puck

8.4 Convolution

After we have got to kuow the della impulse in detail, we will return to answer
the remaining guestions in Section &1. The impulse response briety introduced
in Section 8.3 will play an important part in this.

8.4.1 Describing Systems with the Impulse Response

In Chapicr 3 we were interested for Lhe fivst time in deseribing the transfer prop-
erties of LTI-systems, We could show only using the definitions of lineavity and
time-invariance that functions of the form ™ are eigenfunctions of L1T-systems.
This leads directly to the system finction as a system model of LTI-syslems iu
the frequency-domain.,
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description and interpreted it as the system response to a delta impulse, we now
derive an equivalent relationship to (8.1) in the time-domain. To do this we only
need to use

e the impulse response h(t) of an LTl-system,
e the selective property of the delta impulse,
e the definitions of linearity and time-invariance.

The result is then general and does not only apply to the network considered in
Section 8.2 as an introduction.

We will start with an LTI-system with a known impulse response h(t) and we
want to show

e that the impulse response A(t) is sufficient to describe the system’s reaction
to any input signal,

® how the relationship between the inputs signal and output signal looks in
the time-domain,

First of all we describe the LTT-system with its reaction to an input signal

y(t) = S{z(t)}. (8.33)
In particular, the reaction to a delta impulse is
hit) = S{6{t)}. (8.34)

Then we use the selective property (8.15), combined with (8.20) to express the
input signal as a function of itself

il o= / T vy (8.35)

-0

With (8.33) we find the output signal
() = & 4 / 2()(t — v)de y . (8.36)

—oc

In the integral only §({ — z) depends on ¢: the values x(z) are in terms of { ouly
weighting factors. Because of the linearity of the system

X3

sy = [ a(0stoe - oz (8.37)

— XD
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Finally, from the time-invariance and (8.34).

y{t) = / z(ih{t — o)dr. {8.3%8)

—

This is our goal, as {£.38) shows that only knowledge of the inpulse response of
an LTT-system is needed to find its veaction to ay input signal x{f).

The cowbination of two functions of time f{{) and g(#) {(8.38) 15 called ronwn-
tutron and is denotod by *.

o |
/ floyglt — o)do = (1) *g(t)

— !

e . . ! P . . e
With the substitution £ = { — ¢ it is casy to show that convolution is commutative

FtY#g(t) = g(b) = f(£) .

8.4.2 Impulse Response and Systeimn Function

The answer to question 4 in Section 8.1 is now clear: just as the transform of
Lhe output signal ¥'{s) can be obtained in the frequency-domain by multiplying
the transform of the input signal X (4) with the system fanction II(s), the ontput
signal in the lime-domain is given by the convolntion of the input signal with the
impulse response.

X(s) —=| H(s) [—=Y{(s)=H(s) X(s)

Figure 8.15: A system in the frequency-domain

Figires 8.15 and 8.16 show how multiplication with the system function in Lhe
frecuency-domain and convolution with the inipulse response in the time-domain
are equivalent. The connection can also be formally expressed. The rvelation we
alreadly know in the [requency domain follows from the convolution relation

{n

y{t) = h{(t}2x(t) = [ hit — Do) de {8.31)

W i
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wft) —=| A(f) = y(t) = fw i~ cjx()de

]

Figuare #8.16: A systen) in the time-domain

using the Laplace transforn, swapping the integrals and collecting togetlier the

Lerms.
/ [; hit — )yx(7) dz] et

= ] [“w t- e dta{c)de

f' H(s)e —*fJ(zmz»—H(q/ a(t)di = H{s) - X(s)
(8.40)

Liulth}

i

K

We have now shown the conrvelution theorera of the Laplace cransform:

hit) = x(t) o8 H{s)X{(s). sc ROCG{h+a} 2 ROC{z}N ROCLAL. \
(84D
It ig not ouly true when A{t) is an impulse response and () is an input signal,
but also generally for all pairs of functions of thne whose Laplace traisforms exist,
The region of convergenee of the convolution product ROC{A » 2} is the in-
tersection between the regions of convergence ROC{2} and ROC{A}. These two
regions of convergence must overlap for the Laplace transform of the conveluiion
product to exist. I (8.40) we had set out the condition that the complex frequency
variable g can only take values for which both X (s) and H(s) exist. The region
of convergence ROC{h + 2} can, however, actually be larger than the intersection
of ROC{x} and ROC{A} if. for example, poles are caneelled out by zeros. Often
when £{h{f} + 2{)} does not exist, it means that the convoiution product (8.38)
does not exist itself. Expression {8.38) Is indeed an intpropey integral that only
comrverges under certain eonditions,
The ROC{A} of the system [unction (s} that we have so far not paid much
atlention 1o, can be derived from the conmection between the system funetion and
impulse response

s) = L)}, (8.42)
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The normal rules soverning the region of the Laplace transformn apply in this case,
and as they are all given in Chapter 4.5.3 we will not repeat them here.

An interesting consequence can be obtained from the convelution theo-
rem (8.41), if a delta impulse 13 input as x{t).

R(U) * 6(to—e I (s)£{4(1)) (8.43)

As hit) = 4(t) = h(t}, however,
|‘E{5(r)} ~1. (8.44)

This can be nmmediately confirmed with the selective property

c{ait)) = / Siye " dt = 1. ROC=C. {R.45)
The region of convergence encloses the entire complex plane, as the delta impulse
is a signal of finite duration.

Just as the number 1 is the unity element of multiplication. the delta iinpulse
is the unity element of convolution. Figure 8.17 illustrates this.

w(l) = (1) —| At e y(i) = () = () = h(t)

X{sy=1 — H(s) P Y{(s)=1-H{s} H(s)

I

Figure 8.17: ET[-system with a delta impulse ag input function

With the convolution theorem we can also casily confirm that e*f is the eigen-
function of LT -systems. 1In Chapter 3 we derived this property from the concepts
of linearity and time-invariance. Convolution for x(t) = ¢** gives

e ) txal
y(t) :] o) et~ Tdr = e“[ hlr)e *Tdr=e"H(s), s&ROC{L}.

— G o —i
(8.46)
The response to an exponential function is likewise an oxponential function. mui-
tiplied by the system [unction H{s}). The convolution mtegral clearly converges
when the complex frequency s of the the input signal a:(t) lies in Lthe region of
convergence of the system function.
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8.4.3 Calculating the Convolution Integral

Calcudaiion of the convohision integral (8.39) requires some practive. [t is es-
pecially important to make the disiinction between the time variable £ and the
integration variable £ in (8.39). We will deal with this subtle but important dif-
ference in detail. in a simple example where we will ealeulate the response of an
RC-cirenil to a rectangle impulse. In Section 8.2.2 this problem has already heen
solved in the frequency-domain and the result is shown in Figure 8.4. This time
we will stay i the time-domain and use the convolution theorem.

First we consider the function of time A(t) [om Figure 8.2, which we already
know represents the impulse response. In Figure 8.18 above, A{ ) is plotied against
the variable of integration r. To change it to the form h{t ~ ¢} from (8.39), we
first have to turn the right-sided function to the left (A{(— 7)) and shifi it by ¢
{h{t— z}). Figure 8.18 (middle) shows the resuli for various vahies of £, Note that
£ takes a Hxed value while being integrated over z. The resull y(#) is dependent
on t hecause the convolulion integral is calculated for many values of £

1 | A
7 &
T
h(t-1)
1<} =0
=0
T
b3 7), h{t-E)
A o
2 {‘ T
/ .
t<@ G<r £T, Th<t

Figure #.18: The convolution integral

The integrand A(t — £)x(r) is obtained by multiplication with z(z¢). The rect-
angular form of #{z) means that the integral can ouly have non-zero values ior
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0 < ¢ < Tp. Here there are three cases to be distinguished (Figure 8.18 bottom).

o For I < 0 there is no overlap of h{t — ©) and 2{z). The product h{t — zjz(z)
and likewise the integral have the value zero.

e Yor 0 < i< Ty bt — z) and x{c) partially overlap so the upper limit of the
intogral depends on £, The result s

2

I3
. 1 1 L
y(t) = /htf.w r)ﬁdr:?ﬂf&—,e t=WT jr =
]

0

\ t
L —-r/’I’[ /T

= Z——g7" 2 de=
TQTG ‘ ¢ z
o

1 J. ——L/‘T EXTr 1 { —f’l'
T(,Tf ¢ 0 Ty ¢ ( )

e For Ty < t, hit — #) and =(z) overlap completely and the integration must
be carried out betwoen 0 and T, We obtain:

Ta Tu
f 1 1
Vo oy — - I =TYT .
y(t) [ hit — ) T dr T j T € de
3 8]

TU
| S - T
= ﬁqj‘-ehtﬁf@rﬂ idr =
0
L B S I UV N Y'Y
= ——g " Te :.'.:w-—[_,‘“H —-]]."/. A8
’11-)2‘(7 € IO 7;) [ € (84 )

Summarised, the result of convolution is

1 oL 1 T
Wil = —_— [| — ;_!'/‘ii| cffy o= |1 - E,_"U-—In)/f] P ) =
w(#) o Uk (t) - o [ £(t —Th)
i -
— |1 -] 0l Ty
Lo
= _jj:-;“ [ETH,{’[' _ l] e—-i‘._fT r:ru “_if {8’19}
0
0 otherwise,

as we oblained in the frequency-domain ealeulation in (8.7). Because of the three
cases, evaluating the convolution integral in the 1ine-doieain is significantly more
complicated even for the simple case considered here.
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8.4.4 Impulse Response of Special Systems

Now that we have investigated the rvelationship between the system function H(s)
in the frequency-domain and the impulse response k{f} in the time-domain, we
will consider the hnpulse responses of somne special systems.

8.4.4.1 Integrators

First of all we would like to know about the properties of a system that has the
step function e(t) as its impulse response. From the convolution of £(t} and (1),
we find that with {8.39) the output signal is

(e ]

ylty = e{ty e u{t) = / st — Dz{o)dr. (8.50)
Since
' p 1 o<t¢ ,
z{z) = { {l) Zig and s{t— 1) = { 0 :;: (8.51)

we can leave oui the step funetion under the integral in (8.50} and instead ounly
inlegrate aver the values of ¢ for which {7 — £} = 1, that is, between —o¢ < £ < 1,
It should again be noted that for integration over v, the time 1 should be seen as
a fixed parameter. We obtait the system description

E

Yty =elt) xu(t) = [ w(r)dr. (8.52)

—

A systein with the step respounse z(f) as impulse respanse therefore leads to an
integration of the input signal, or in short: It 18 an integrator.

This result was also found in Section 8.3.4.5. where we sald that integrating
a delta impulse vielded a step function. Figure 8.19 shows a block diagram of an
integrator and also its response to a delta hmpulse at the input. The convolution

sty — [ b e

Figure 8.19; An integrator Tesponds to a delta impulse with o step function.
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theorem {8.4)) for h(t) = £{t} is

‘ (t) + 2() PR J;X(s). s € ROC 2 ROC{z} N {s: Re{b} > 0}.

(3.53)
This correspondds to the integration theorem for the Laplace transform (4.27). The
transfer function of the integrator is

His) = £{st)) = = . Refs} > 9. (8.54)

8.4.4.2 Differentiator

In Section 8.3.4.4 we ot to know d(t) as the derivative of the delta lmpnlse with
vespect to time, We would therefore guess that 4(t) would be the impulse response
for a differentiator. We can confiyin that this is the case il we find the convolution
of an mput signal 2(f) with the suggested impulse response:

e,

y() =8(t) xalt) = [ 3t — Du(t)dr

—na

=_ T Sr~ ta(r)de = (t)

_—

In (8.55) we used the scloctive property of A(t) {8.23) as well as the facl that we
know 4(t) is odd (8.26). Convolution with the impulse response 4(2) yields the
derivative of a function with respect to time.

‘The system funciion tor a differentiator is

His) = L{5(1)) = / bltle™dt =5, seC. (8.56)

—

We can now re-write the differentiation theorem of the Laplace transfonn (4.26)
directly as a special casc of the convolution theorem (8.41):

() = 8() = xll) o—e sX(s}). s€ROCD ROC{:.L‘}”._ (8.57)

Iuterestingly enough we can also use (8.57) on signals with discontinnities or
on distributions, i’ we interpret &(£) as the derivation of (), which may contain
steps, delta inpulses and derivatives of delta impulses. We can then aveid having
to deal with the initial valne 2(0-) separately in the differentiation theorem for
right-sided signals (4.34) or the step in the differentiation theorern (4.41). This is
illustrated in the following example.
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Example 8.5

Here we will calenlate the Laplace transform of the triangular impulse (Exam-
ple 4.10) once more. First we form the second derivation of 2(t).

) : 1 2
{1t = 2t (S i = —_— — ——————— 5 ¥
2{t) 2 (t) * 8{t) BT (£ —2T) (2,1,)25{;)4» @ (¢t +27)
: 1
Pt) = @&{t)«+4d = —§{t - 27
E(t) F(L) * 8(t) it -2 - (mzt i(t) + (mza(f +27T)
The Laplace transtorm yields:
o 1 24 T i r e a7
$2X(s) = e (T -2+ ™7y = AL Ay

The resull.

is then mmediately obtained, and it corresponds to (4.45).

8.4.4.3 Dclay Circnits

A delay circuit is a system that reproduces the input stgual at the outpnt after a
fixed time delay £5. Apart from the delay, the signal reniaing unchanged. Therefore
the systemn response of a delay cirenit to a delta impulse d{t) muast be a delta
impulse delayed by tg (see Figure 8.20}

hity =6t —tp) . (8.58)

A(t)

Ty
Figure 8.20: linpulse response of a delay civevit

That an LTI-system with this impulse response also delays all ather jnput
signals by &, follows from the selective property and convolution

y(ty = 6(1 —ip) x x(t) = ] 8t ~ r—tphe(z)de = 2(t — ) . (8.54)
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This relationship is depicted in Figure 821,
The gvstem function

oo

H{s) = L{8(t ~ to}} = / Bt — tple ™ dt w o™ | 5 eC (3.60)

N

represents a delay cirenit. It can be nged to show how the shift theorem of Lhe
Laplace transforia (4.22) can he interpreted as a special case of the convolution
theorem {8.41}, just like the iufegration theovem and differentiation theorem. Note
that the system function {8.60) i not & rational fraction fmnetion, as an ideal delay
cireuit cannot be implemented with a {inite mumber of initial states or energy
StOres.

x()

—t \ x() = h(r)
— I\
ko) 4 -

!

fo
Figure 8.21: Convolution with a shifted delta mpulse

A system can also consist of multiple delay citeuits in parallel. 1I. is then
possible, {or example, to describe propagation of sound waves or olectromagnetic
waves with multiple echioes in an ideal form. Each echo is represented by ity own
delay civeait, for which the delay time corresponds to the propagation delay of the
signal. Different levels of damping can he representedl by weighting factors for the
delta fmpulses.

Fignre 8.22 shows the impulse response of such a gysten: and the result of
convolution with a triangular input signal £(t). The fmpalse with welght 2 i3 a
negative delay. This is of course impossible for real-world propagation of waves,
This example is only intended to show that system theory has no problem describ-
ing idealised systems that are impossible to implement.

In Chapter 11 we will be investigating the sampling of continuous signals.
Convolution wilth an impulse train will play ap important role theve as it ean be
viewed as a superposition of delayed impulses. The delay tines are each a multiple
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x(£)

| -\ X(0) » A0
" T I\ N\l\
@ / .

Figure 8.22: Couvolution with mnltiple shifted delia impulses

of a fundamental delay time T, which is the sampling interval. The impulse train
can be writlen as a distribution

> 6(t Ty . (8.61)

An impulse train is shown in Figure 8.23 (bottom left). Convolution of a signal
x(#) with an jinpulse train Jeads to a periodic repetition of 2(t) with period 7" (sce
Figure 8.23).

x(n)

| »- F\ X(I) * k(1)

hir) /*_‘*l\ ul};f
R

T 2T

Figure 8.23: Convolution!wilh an impulse train

8.4.4.4 Control Engineering

The principle of signals aud systetns, Lo describe systems using their input-output
hehaviour (system funclion, impulse response, stap response) and not their imple-
mentation has already been used for a long time in coptrol engineering. Control
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nethods were at first (starting with sleam engines) developed separately for each
of the different areas (mechanical, ¢lectrical, chemical engineering, elc.} but it
was soon recognised thut the control procedures for very different problems all
followed the samce principles. Ways of describing systems independent of their
impleinentation were then investigated, the goal being to ropresent only the sig-
nificant relationships between caunse and eflect.

1t wos customary in control engineering Lo use the slep response to characterise
LTT-systems instead of the impulse response. This is partly because the theory of
distribuiions was developed later, but also because the step response s easier to
measure than the impulse response. That is understandable as not every sensitive
technical ar biological system can deal with a powerful spike (as an approximation
for a delta impulse) as easily as the puck in Figure 8.13.

The maost important elements of control engineering are depicted in Figure 8.24.
The graphical symbols each show the fundamental behaviour of the impulse ve-
sponse. The formulae for the impulse responses are shown next to them.

The I-circuit is an integrator with a factor in front of it. It responds to a step
with a steadily climbing ramp. 1ts impulse response is a scaled step function. The
J-circuit defines systems that can store encrgy, for example, capacitors.

The P-circuit is a multiplier that is defined by its factor. Iis impulse response
is o scaled impulse.

A Pl-circuit consists of a P-circuit and an f-circuit connected in parallel. The
step and impulse responses arc each the sum of the corresponding functions [or
the P-circuit and J-circuit.

A PT)-circuit represents a differential equation of the form

Uity + %y(t) = z(t) . (3.62)

An exaraple is the RC-network from Figure 8.1 (to a constant factor). The step
response exponentially approaches a value that depends on a time constant 7.
The tupulse response s a decaying exponential fmuction.

A DTy-circuit represents the differential equation

. 1 ) .

glE) + fy(i) = &(f) . (8.63)
An example is the RC-network from Figure 6.3 with the step response shown in
Figure .5,

8.4.5 Combinations of Simple LTI-Systems

In Section 6.G we invesligated the combination of simple LTT-systems that were
connected in parallel or series. We saw that the combinations of ITl-systems led
to more complex LTT-systems whose systern functions could be found casily by
combining the component’s individual system functions. For impulse responses of
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Name Block diagram Impulse Response
I-circuit — | i Wk e h(t) = fe(t)
P-circuit = 4 [ (1) = ad()
FPI-cireuit ™ e m™ h(t} = o 8(E) +- %E(f)

D -circuit — . A(t) = 8(t) — %_({_.}S(t)

PT-civenit. I Ti " hit) =elt)e™ T
A

Fignre 8.24: Lincar, Lime-invariant control circuits

systems connected in parallel or series, as shown in Figures 8.25 and £.26, there
are also similarly simple relalionships.
Eor the series coupling, with (6.26) and the convolution theoremn,

His)= Hi(s) - Hols) ® o h{t)=h(t)=ha{f). {8.64)

For the parallel coupling, with {6.29),

H(s) = Hi(s) + Ha(s) w0 h(t) = hu(t) + s(2) (8.65)

hecause of the linearity of the Laplace transform. A similarly simple reiation-
ship for the impulse response of a feedback system, that would correspond to the
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— |k 1 {1} hz(f ) ——

x(H) yit) identical
output signals

————| B ()

X(6) ¥(

Figure 8.25: Systems in geries

;?i(f)

X0 " ¥

¥

identical

ouiput signals

—— ] hl(f) + h-z{f] ———re——

x() y(1)

Figure 8.26: Systoms in parallel

frequency-domain deseription (6.31) unforfunately does not exist.

Combining the step responses, for example, to characterise LTE-systemns in
control engineering (compare Section 8.4.4), is somewhat more involved than (8.64)
and {8.65). If «1(t) and s+(t) are the step responses of systemns with the impulse
responses h (£) and ha(#), then

53 () = et} * b (8)
{8.66)
aa(t) = e(t} = hylt),
and the complete system step response {or the parallel coupling i3

s(t) = e(t) + (hi(t) + ha(1)) = s{t) + 52t} .

For the series coupling, however, the step lunctions must be combined in accor-
dance with

s{0) = e() # Ay lt) w ho(f) = (1) % 2(8) % Ay (8)] % [e(2) * ha ()]

= 3(t) # 5, (1) % 59{0) = &4 (8) # s0(8) = s1(L) % $2(1)
(8.67)
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One of the two step responses must also be differentiated before convolution
takes place. Allernatively, the convolution of the step response can be carried ous,
and then the result can he dilferentiated. Equation (8.67) can eagily he expanded
to cover N cascaded systems. The complete step response is obtained by differ-

entiating the companent step responses or the compleie product of convolution
(N —1) times.

8.4.6 Convolution by Inspection

In Section 8.4.3 we bricfly dealt with the calculation of the convolition integral.
This method always works, but it is cumbersome for funclions that are defined by
nmltiple cases, as the convolution integral takes a different form for cach case, and
each must be caleulated individually.

In this section we will describe a simple method that is well snited to signals
with constant sections, as it is not necessary to evaluate the convolution infegral for
these sections. With some practice it is possible to find the convolution product
with this method, called convelution by wnspecizon. 'T'he reader should try to
acquire this skill, because it brings an intuitive understanding of the convolution
operation which is essential for practical work.

Ta demonstrate the process, we will eonsider the two rectangle signals from
Figure 8.27 and first evalnate the convolution integral as in Section 8.4.3.

Example 8.6

1\ b3

Figure 8.27: Example 8.6 of convolution by inzpection

The two signals from Figure 8.27 are defined by the functions

1 0<t<? 2 0<t<2 .
f(t)::{ 5 JEES4 g(t}:{ = . (8.68)

otherwise 0 otherwise

To ealculate the convolution integral, however, both signals st be functions of
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7 and additionally, cne must be inverted and shifted in time:

o 2 0<t—¢<2 or

- 1 << <2 ] i _ P < <t -

o) _{ 0 otherwise ¢ -7 = ( ]__ - (869)
0  otherwise

The product f{z} gt — ¢) is zero for certain sections of #

0 t <
4) el
{“ 0= est 0<t<2
(2)g(t - 7) = 0 otherwise (8.70)
e 2 (t-2se52 2<t< 4 ‘
0 otherwise -
0 4<t
The convolution integral takes the values
¢
_ f2dr 0<t<2
= b
wlt) = t—ldr = 2
wt) = [ f(oee- D % air 2<ted
_— i—2
( otherwise
2t 0<t<?
= { 4-9 2<t<4 (8.71)
0 otherwise
This defines the triangular signal shown in Figure 8.27.
[

The methad of calenlation we have shown here is correct, but because we had
to consider various different cases it is unnecessarily cumbersome. Looking at the
simplicity of the result, it seems likely thal there is a simpler way of performing
this convolution.

The first property that is noticeable, is that because the signals f(t} and {1}
are piecewise constant, the product f{z)¢(t — ) can also only have a constant
value for some sections. Consequently, the convolution integral gives either the
value zero (when f{r)g(t — ) = 0) or a linearly growing or decaying function.
It is therefore sufficient to only calculate the value of the convolution integral at
certain points, where the value of f{7) g{t — r) changes. The intermediate values of
tho convolution integral can be obtained by linking the points by straight lines. To
explain we will repeat the last example with the graphical method just described.

Example 8.7
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Determining the convolution of f(2) and g(t) from Figure 8.27 requires tliat we
first take g as a function of r, and nvert g{z) (o give g{~ 7). Shifting backwards
and forwards is performed with g(¢t — z) and various values of £, For # < 0, f(z)
and g(t — ¢) do not overlap, but at ¢ = 0 bolh rectangle functions start at the same
point, = 0. For 0 < { < 2 the two rectangles overlap in the region 0 < r < t. At
t =2, f{r) and ¢{2 — 7) cover each other comletely. For 2 < £ < 4, the overlap is
ouly tu the region ¢ — 2 < ¢ < 2, and at t = 4 the vectangle functions f(z) and
g(1 — ) only border cach other, at r = 2. When t > 4 their is no longer any
overlapping. The critical points arc therefore:

e =0 1o overlap until this point,
e =2 complete overlap,
o }=4 no longer any overlap.

At £ =0 and ¢ = 4 the value of the convalution integral is zera (f{z)g{~7) = 0
and f(z}g{d—z} = 0). At t = 2 the product f(z) g(2~ 7) has the value 1 x2 = 2;
the vatue of the convolution integral is cquad to the area of a rectangle with heighit
1> 2 and width 2, i.e., 4. The result ol the convolution of f{t) and ¢{¢} can be
obtained in a graphical way by linking the individual points (0,0}, (2,4) and (4,0)
with straight lines, Fort = 0 and 4 < ¢ the value of the convolution integral is zero.
This forms the triangle in Figure 8.27 without any integration heing necessary. a

The procedure we have just described can be sunmumarised as a general method
for graphically determining the convolution of signals wilh constant sections.

1. Turn one of the signals around and imagine shifting it. As convolution is
commutalive, this can be done with the simpler of the two signals.

2. Recognise and note the the displacements where changes in the overlap be-
tween the bwo signals ocour.

3. Determine the convolulion integral at these points by forming the product
of both signals and caleulating the areas from height X width.

4. Mark these points on the time axis () and link them with straight Hoes.
Scetions on the time axis where no overlapping ocenrs are given the value
£ETO,

We will now give two examples of how this procedure should be followod.

Example 8.8
We want to perform the convolution of the two signals rom Figure 8.28.

1, We choose signa} g{#) to be twrned around and shifted because it starts at
b=,
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Ao
2

,ﬂ — 6

12 \ | !

} 810 P ||
3 : | | !

/ 012 465
- |

Figure 8.28: Convolution by inspection {Example 8.8)

2. The recogniseable points on the time axis are:

at t =1 f{z) and ¢{1 — =} start to overlap.
& ot t =2 g{2 — ¢) completely covers the rectangle f{z),
e it remains completely covered while 2 < < 4 and stops at ¢ = 4,
e at t = 4. g(£ — 7} only partially overlaps f(z}.
# af ¢ = 5 the Ametions no longer overlap.
3. While f{z) is completely covered(2 < { < 4). the value of the product

F(ohglt ~ ) is 2 x 3 = 6. The convolution integral then has the vahie of 2
rectangle with height 8 and width 1, which is 1 x 6 = 6.

4. Marking in the points (1,03, {2,6), {4.6) and (5.0} and linking them forms
the trapezium shown Figure 8.28,

Example 8.9
Figure 8.29 shows the convolution of a recsangle signal with a non-rectangular
signal, which is, howover, constant in sections. Using ouwr prescribed procedure
leads to Lhe following results.
L. The signal g(#) is the simplest and so it will be reversed and shifled.

2, The characteristic points are:

o =] overlapping starts,
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4 fi
&
2 12
I
t —=—-t 9
0 34
g |
! o —
g0 N
3 /
—d . i
1 34567
1 —-
1 3

Figure 8.29: Convolution by inspection (Example 8.9)

s t=3 the rectangle is cornplctely superimposed over
the higher part of f(z),

o t=4 the rectangle stops being cormpletely superimposed aver
the higher part of f(z) and starts being partially superimposed over
the lower part of f(z),

e t=5 the lower part of f(z) is completely covered by the rectangle,

e t=6 the rectangle no longer covers any part of the higher part,
and only partially overlaps the lower part,

ot =7 all overlapping with f(z) stops.

3. By multiplying the signal with constant sections at the characteristic points,
constant products are obtained. Determining tlir areas gives the following
values for the convolution integral:

s t=1 Tf(——f)g(r)dz’:O

— X3

ei=3 | f2-Dg(rde — 12

ct=1 | f8-Dg(rydr = 12

X2

ei=5 J J4=2)gle)de

6— 3=9

et=6 [ f5-glr)de =3

fe )
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o (=17 ffb-wr}gf]dr_o
4. Marking the points (1,0), (3.12).(4,12), (5,9}, (6,3}, (7,0} and linking them
with straight lines forms the result depicted in Figure 8.29.

Comparing Figures 8.27, 8.28 and 8.29 it becomes clear that the length of the
convolution product is equal to the sum of the Icnglits of the two signals. The
points at the start and end of the convolution product are also the sums «f the
individual start and end points. It can easily be shown that this is generally true
for the convolution of all time bounded functions (not just those with constant
sections), by using point 2 of our procedure on the start arid end points of overlap
for general signals, as in Figure 8.30.

) i [

2N

o ———

| { '
m / Lyrt+ia2 Leptien
} - !

Figure 8.30: Length of the convolution product of two finite functions

?

The prescribed procedure for signals with constant sections can be used on
all signals that can be described in sections by polynomials. The convolution of
these signals with degrees K arid I leads to a convolution product with order
K 4+ L T1. That means that convolution d a triangular signal {K = 1) with a
rectangular signal (L= 0) would have a convolution product formed from second-
order parabolic sections (K+L+ 1=2). The convolution 0t two triangular signals
(K = L = 1)gives a third-order convolution product {K +L + 1= 3).

8.5 Applications

Many interesting uses of signal processing are based on convolution relationships.
Here we will examine two examples, matched filters arid de-convolution.
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8.5.1 Matched Filter

In many practical tasks, the aim is to recognise known signal forms. which means
identifying what point in time they occur and distinguishing them from other
signal forms. Examples d these tasks are speecll recognition. object recognition
in images, ele.

Prineciple: In the simplest case wc want to recognise when a signal component
m(t) occurs. That means we are dealing with a signal of the form

z(t) =ml(t —tg). (8.72)

where the function m(t) is known hut the time ¢y by which mi(¢) is shifted i5 not
known. For example, we could transmit an acoustic signal #(2), and with the echo
x(t), determine the unknown time taken for it to return.

To achieve this, the received signal (%) is filtered with an LTT-systen that has
an impulse response derived from the signal form m(1):

h(t) = wm(--1). (8.73)

The minus sign in m{—t) cancels out the reversal of the signal in convolution, so
the output signal is

o o
ylt) = hit) = 2(t) = / hit— Dya(oydr = [ mir—~thr{z)dr. (8.74}
—c .
For an input signal of the form (8.72), the output signal is

L)

y(t) = f miz — t)mlr—to) dr. (S.75)

R

The output signal will be maximal at the unknown time #:

ylty) = [ m?{(z —ty)de 2 / mlz - t)m{e —to)dr . (8.76)

—00 —

The integral over the always positive value m?(¢ — #3) must be at Itast greater
than y(t) except at f — lg. Suitable choice of the signal m(t) can make the value
of y{¥a) 1mmch greater than all other values of y{£), and then the unknown time
ty can then be recognised as the peak in the sighal ¢{t}. Figure 8.31 shows the
corresponding arrangement of a filter with impulse response (873)and a peak
detector. A filter of this kind is called a matched filter.
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| peak
W (- '"""""'s]_detection "

Figure 8.31: Finding a signal pattern m{t} using convolution with m(—%)

Example 8.10

As an example ot a possible application for a matched filter, we will consider
the arrangement shown in Figure 8.32,intended to count and roughly measure the
speed of vehicles. The only souree of information awvailable is the signal from the
distance sensor, which gives the distance between itself arid an object below it for
all £. The problem is to decide what kind of vehicle is passing, work out its speed
and count the number. of each kind of vehicle. Typical forms of signal for. cars and
lorries moving quickly or slowly are shown in Figure 8.39.

distance
sensor

Xt}

‘_Eé:(_}k *_&1; @)

Figure 8.42: Counting and measuring the speed of vehicles

(CCCC(C

[

A svstem that perfornis the counting function with the signal x(t) from the
distance scnsor is depicted in Figure 8.31. The sensor signal runs through a bank
of four filters that each responds to a different class of vehicle using 1he templates
in Figure 8.33. For each filter. the maximum detector recognises if and when its
signal form has occurred, and these events arc automaticnlly counted to give the
desired result.

8.5.2 Deconvolution

Sometimes the problem does not require that a signal is changed by a filter, but
instead that an already filtered signal is returned to its originial form. Problems
of this kind often occur.
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Slow car my(7)

my(z) &
Fast car
[_/K\ .
[y
F3 ) T 4
Slow lorry ma{t)
-t
4
ma(t)
Fast lorry
ot
TFigure 8.33: Typical signal forms
n counter
| (-1} slow cars
- ] counter
. fast cars
maximun-
) * detection
(-t counter
3 slow lorries
| counter
) i ' fast lorries

Figure 8 34. Block diagram of the detector

&« A microphone recording made in a room is the convolution of the sound
signal produced by the instrument or voice with the impulse response of the
surrounding space. The impulse response of a room can by heard as the
response to a clap or the crack of a whip. This convolution must be done in
reverse t0 remove the interference.
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e A blurred image from a camera can be interpretedt as convolution with
smothing system The impulse response is the blurred spot that would be a
sharp point on the original image

» A radio channel with multi-path propagation can be described by an impulse
response that consists of multiple time-shifted echos (se¢ Chapter 8.4.43).

= The inertia of measuring instruments has a smoothing effect on the mea-
sured signals and smooths sharp steps into slowly rising slopes. The impulse
response of such 93 stems can often be modelled by an RC-circuit with a large
time-comstant.

If the impulse response h(t) is known tor such a system, then it is porsible to
attempt to invert the influence of /i (t) by convolution with a second LTI-system
g(t). In the icleal case the result is again a delta impulse:

a(t) * h(t) = §(t) . (8.77)

The system function G{s) = L{g(¢)} of the second system can be cxpiessed by the
system function H(s) = £{/(#)}, using the convolution theorem:

1

(8.78)
dhe effect of a system with system function G(s) is called deconvolution. It is
rarely possible to carry out in the ideal form of (8.78), because the measured sig-
nals usually have additional noise interference. In addition, signal components
that were suppressed completely by the first system (zeros of the system func-
tion), cannot be recovered from the second system. The filter that represents the
best compromise between deconvolution and noise reduction will be introduced in
Chapter 18 as the Wiener filter. A system with system function G(s) (8.78) could
also be unstable. This problem will be dealt with in Section 16.3.

8.6 Exercises

Exorcise 8.1

Show that the response of an RC-circuit to a short rectangle impulse (8.7) turns
into the impulse response (8.4) for Ty — 0.

Exercise 8.2

Using the calculation rules for the delta impulse, determine:

a) fo = f e—ﬁﬁ(t) dt

o
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fo= ]? eta(t — ) dt
¢} fo= j (12 —~2) 83t} at

d) fo= j te '4(4 _2t)dt

Exercise 8.3

The following signals are each turned on at ¢ = O

3) 1 Xa(f)
I
12 G
b} xb(t)
111
o 2 4 6 !

Give x, () and @ (£) vsing the step function ¢(¢) for both, then form the derivations
and sketch them.

Exercise 8.4
Form the derivation of f(¢) = &{—~#)

Exercise 8.5
Form ihe derivation of f(t) =¢=(at).

Exercise 8.6

You are given the functions f(t) = t=(t) and g(t) = «(t) — =({ — 4). Calculate
y(t) = J(t) = g(t) using the convolution integral.

Exercise 8.7

Fxamine the following signals:
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xi{#) 4 00 & x3(0)
2 2 2
L > ¢ ] - 01 »
x4(t) xs(#) d (0
(n I(l) t —o
L - 1 1 t') - f

The following convolution products are also given:

ikt

y3lf)

A 1 t ! !
o & y4(D) N ys{t) o4 yelt)
/ Inil
5 : r45 - : -
D) o4 yalt) yol)
z2
N\ !
T M 1t Tt

For each of the convolution products, determine the pair of signals z, and @, that
created this result.

Exercise 8.8
Find the response of the RC-network shown in Figure 8.1t0 the rectangle impulse
(o]

shown in Figure 8.3 by solving the convolution integral [ h(z)a{t — z)dz.
e

Note: see Section 8.4.3.

Exercise 8.9

For the example of an RLC-network (Chapter 3.2.3), give

a) the system function (note that i(¢) is the output variable)
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b} the impulse responge
c) the region of convergence of the system function

d) Which values can the parameters op and wy of the input signal «(?) take, so
that the system response :(t) converges? Assume that u(t) is right sided.



9 The Fourier Transform

Like the Laplace transform, the Fourier transform plays an important role in
system analysis and tlie rriodellirig of LT[-systems. Its defintion, properties and
usage will be examined in this chapter.

After we have already proven that the Laplace transform is very useful, one
may ask why there is a need for another transform. We will tharefore start the
chapter with a critical review of the Laplace transform.

9.1 Review of the Laplace Transform

In the previous chapters we got to know the Laplace transform as a model of LT'T-
systems that were described by differential equations. It allowed us to evaluate
Lhe system response 1 an elegant way. in particular if there were initial conditions
to consider.

The obvious advantages d the Laplace transform only come with LTI-systems
that are chaacterised by a elear mmmber of poles and zeros, o1 equivalently, are
described by a differeiitial equation with constant coefficients Other important
LTI-systems also exist, however, that cannot be characterised by a few poles and
zeros, for example the delay circuit in Chapter 8.4.4.3 We will learn furthei unpor-
tant examples in this chapter. Attempting to describe such LTI-systems using the
Laplace transform leads to system fiinctions with an infinite number of poles and
zeros, OF With essential singularities, It is actually possible to work around these
difficulties, but the mathematically correct methods require significantly more ad-
vanced knowledge of function theory than we have discussed in Chapter 5 Even
worse is thr fact that the elegance of the method modelling systems as a few
complex natural resonances in the time-domain arid frequency-domain - is lost.
The Laplace transform is particularly suitable it we arc concerned with signals
of finite duration, or unilateral signals. We have represented these signals witl:
the Laplace transform as overlapping eigenfunctions of LTI-systems which have
the form e*. although £{e*} does iiot exist. The same also goes for £{sinwt},
L{coswt} and L{1}. In this chapter we will see how elegantly the Fourier trans-
form overcomes this problem if generalised functions in thr freqmency-domain are
permitted.

There are more aspects of owr previous dealings with the Laplace transfoim
that we have riot yet made fully clear: putting the system model in the frequency-
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domain has the primary goal of making «alculations simpler to carry out than
they would be in the time-domain. The first example of this is the evaluation
of the system response, which can be represented in tire frequency-domain as a
multiplication by the system fiinction, but in the time-cdomain requires 1he use of
the convolution integral. As a second example, we give the analysis in natural
resonances which is so simple in the frequency-domain using partial fractions.
that we have never done it iii the time-domain. In all cases, however, we have
returned to the time-domain after using the advantages of the frequency-doteain
reprogentation.

We have ravely attempted W characterise or design systems directly throngh
their properties in the frequency-domain. The gnly tine bring the description of
a system function by the poles and zeros in the complex s-plane (see Chapter 6.3).
The interpretation of such pole-zero plots is not so simple, however, because the
system function is a complex function of complex variables. It fails completely
for systems that cannot be described by a differential equaiion with constant
coeflicients, for example, a delay circuit. T'urthermore, beenuse the system funetion
H{(s) has to be analytic in the region of convergence, designing a system in the
s-plane is difficult. as this property may be violated.

The following point summarise the disadvantages of the Laplace transform

e It onlv provides a simple and elegant sysiein model for LTT-systers that ean
be described by ordinary diflerential equations with ¢onstant coeflicients.

o the Laplace transform does not veally exist tor signals ¢, that are eigen-
funetions of LT1-svstems.

a From the system function, (he properties of a system 1n the frequency domain
cannot eastly be scen.

As an alternative t0 the Laplace transform, ser now consider the Fourier trans-
form. We will see that it overcomes the stated disadvantages of the Laplace trans-
form. while also keeping many of the merits.

9.2 Definition of the Feurier Transform

9.2.1 Forward Transformation

At first, the definition of the Fourier transform locks similar to the Laplace trans-
form. A signal is also projected with complex exponential oscillations by an in-
tegral transformation. The complex frequency of these exponential oscillations is
however. purely imaginary, so no decaying or growing oscillations occur.

X{jw) = Fell)} = / m::;(t)e—w‘-fﬁ (9.1)

—
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The result of the transformation X (jw) is called the Fourer Trunsform, Fourter
spectrum or complex amplitude spectrum. The complex exponential oscillation
et iy known as a compler function of tune, The real variable w is the frequency
parameler or the frequency. The Fourier transform therefore depends on the real
frequency parameter, but can itsel{ take a complex value

X(gw) = | X (gu)] - €77 (9.2)

fts magnitude | X (j-.u)l i called the maognitude spectrum. The phase spectrum
er#l1%) s ysually expressed by the phase p(jw). At the beginning it is confusing
that one writes X () and w{jw), and not X(w) and ¢(w). The argument jw is
just a convention. which means that a one-dimensional complex function in the
Gaussian number plane on the imaginaty axis is being defined it could also be
defined as X (w) on the real axis, and there are actually several books that do this
- the dependency on w is unchanged. The sense o tlie jw convention becomes
immediately clear, if a relationship between Fourier and Laplace transforms is
made (Section 9.3). For the Fourier transform. the abbreviated correspondency
form

X{jw) »—o x{t) 9.3)

will be used We use Lhe same syinhol s—o for diffcrent transforms, for example,
the Lapiace, Fourier and later. the z-transform. This symbol is not a strict mathe-
matical assignment, but typographical short-hand for "cortesponding to each other
in the original and transform domain’. Some textbooks attemnpt to use different
symbols for different (ransforms, in order to give a strict mathematical meaning.

9.2.2 Existence of the Fourier Transform

Like the Laplace transform, the Fourier transform only exists for a certain class of
signals. If a function of time x(#) is absolutely tnicgrable, that is sufficient for the
convergence of the Fourier integral. If

foc|:£(£:)i'dt <0, (9.4)

then

ar

B
XGeil < fim [ fatie = d= tim [ it (9.5)

This condition is sufficient but not necessary, and there are in fart time func-
tions that although not integrable, have a Fourier transform. Examples of auch
time functions and their Fourier transforms are

sind

2(l) = oo X{pw) = { T dor ) < (9.6)

1
6 for|w| =1
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and the step function &(¢)

o) = (1) o—e  X(jw) = 16(w)+ —. (9.7)

Ju

We will deal with the evaluation of these Fourier tranforms in the course of this
chapter.

The Fourier trausform of the step function contains a delta impulse §{w}. Up to
now, we have encountered it in the time-domain, but not in the frequency-domain,
As Laplace transforms in the region of convergence are analytic fimctions. there
is no room there for generalised functions. However, with Fourier transforms that
arc functions of a real parameter w (just as with functions of time), the extension
to cover generalised functions does make sense. The popularity of thc Fourier
transform comes from the possiblity of assigning a spectrum with the help of the
delta impulse to many importanl practical funetions for which there is no Laplace
transform. Some elementary examples are constants {e.g. x(t) = 1) arid the
trigonometric functions sinwy# and coswyt.

9.3 Similarities and Differences between Fourier
and Laplace Transforms

The diferences hetween Fourier and Laplace transforins were previonsly discussed
as the Fourier transform was introduced as an independent translormation., There
are many cases, however, where the Fourier and Laplace transtorm formulac agree.
Comparing the Fourier transform and the bilaleral Laplace transform,

0 K

Ca(tyeIetds Lla(t)} = ] 2(te ™ dt (9.8)

—

Faw) = [

it can be seen imnmediately that the Fourier transform of a function of tiinc is the
same as its Laplace transform on the imaginary axis s = jw of the complex plane.
That is of conirse only true if the Laplace transform exists as well. The connection
between Laplace and Fourier transforms is: if the region of convergence of L{r{t)}
contains the imaginary axis s = jw. then

Flz(t)} = L{x(t)} (9.9)

a=Jw

With (9.9) the convention should now make sense, that the Fourier transform is
defined on the imaginary axis and not ou the real axis.
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Example 9.1
The function
z(t) =elt)e™@, a>0 (9.10)
has the Laplace transform
. 1 . .
(§) = —— Re > - 9.11
X(s)=——,  Refs}> (9.11)

Tlie region of convergence lies to the right of the negative mumber —a, and thus
contains the imaginary axis of the s-plane with Re{s} =0.

The Fourier transform is obtained by substituting (9.10) into the defintion of
the Fourier transform (9.1) arid evaluating the integral

1
X(juw) = :
(jw) wta (9.12)

This clearly shows the connection (139) between the Fourier and Laplace trans-
forms

If, however, a <0 in (9.10).the Fomier transform does riot exist, because the
Fourier integral does not converge. The Laplace transform, on the other hand is
unchanged (9.11), although the region of convergence now lies to the right d the
positive number --a arid no longer contains the imaginary axis.

If the rcgiori of convergence of the Laplace transform contains the imaginary
axis. the Fourier transform (9.9) can then be differentiated any number of times.
The Laplace transform can therefore easily be obtained from tlie Fourirr transform
using analytic continuation {Chapter 5.4.3). In practice, this means that Jw is
replaced by s and the region of convergence defines the Laplace transform

Example 9.2
What is tlie Laplace transform of the signal with Fourier transform
X(jw) = = 9.13

Expression (9.13) has no singularities for real values of w and can be differen-
tiated at all points. We can perform analytic continuation on X (yw}, where we
write

1
=G

o -1
X9 =355 = (s —1)(s+1). (9.15)

X(jw) = (9.14)
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X(s) has poles at s = -1 and s = +1, therefore
-1 < Rels} <1,

as the ROC must contain the imaginary axis.

In Example 9.1 we saw that signals exist which have a Laplace transform,
but no Fourier transform. We will also see that signals like x:(t) = ¢?** and others
derived from it (constants, trigoiionietric functions, etc.) liavr a Fourier transform,
but no Laplace transform. The Fourier transform is therefore a necessary and
meaningful companmon of the Laplace transform. This is particularly apparent
for selective systems (filters) that are characterised by their fiequency behaviour,
because then Lhe system properties can he read immediately from the Fourirr
transform of the system response.

The Fourier transform also has great importance for digital signal processing, as
its discrete counterpart, the discrete Fourier transform (DFT),can be implemented
directly as a computer program Or as a circuit. Wirh it, discrete-tine signals can
be workedd with directly in the frequency-domain.

9.4 Examples of the Fourier Transform

In this section we mill find the Fourier transform of sornc important signals. which
wc will refer to later.
9.4.1 The Fourier Transform of the Delta Impulse
The Fourier transform of the delta impulse is obtained Ly inserting it into the
Fourier integral (9.1), and using its selective property.
X(jw) = f“fsu.}e‘w’-dt =1 (9.16)
e

The result corresponds to the Laplace Iransform, as in this case the conditions
for (9.9) have been fulfilled. Figure 9.1 shows the corresponding transform pair

d(1) } FL8(0)

: ®

Pigure 8.1. The delta impulse and its Fourler translorm
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We obtain the Fourier transform of a shifted delta impulse the same way:
o
X{juw) = / 8(t — Ty iWigdt = ¢7IT {9.17)
— o=

In contrast to the Laplace transform, for which the funetion's beliaviour as a
complex function is diffieult to represent, we can more easily represent the Fourier
transform graphically. as o complex function of a real variable. I'bis is most simply
done by splitting it into real and inaginary parts, or into magnitude and phase
of the complex transform (Figure 9.2). The shift of the delte irepulse does not
¢hange the magnitude of the Fourler transforin, but nstead changes the phase
@(jw) = arg { FL8(t - 7))} so thal it decays linearly. The gradient of the phase
correspouds ta the amount of displacement r. The phase of F{4{¢)} has the value
wero. and 15 nol shown in Tignre 9.1,

o {6(1-))]

b 5
- targ{ 7 {6(t=t)} }= —wt

w

Figure 9.2; Shifted delta impulse and its Fourier transtorm

9.4.2 Fourier Transform of the Rectangle Function

To find the Fourier transform of the rectangle function. we first introduce an
abbreviation, of which we will make widespread use. A rectangle function is easy
to draw (see Figure 9.3), hut dealing with the piecewise definition in (9.18)i5 not
suitable because of the necessary case distinction. We therefore use the notation
rect(t) t0 indicate the rectangle function, arid deal with the symbol rect as the
function defined in (9.18).

1
: oy [#D e O

x(f) = rect{l) = U forfils 2 (©.18)
0 otherwise

The limits at ¢ = £4 are chosen so that the rectangle rect(f) has unit height,
widtl: and area. Rectangle mmpmises with other widths will be described by scaling
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4 rect()

=

1
2

Figure 9.3: The rectangle function

with a factor a > O:

rect(at) =

1
0

{

|

< —

for | < 5
otherwise

(9.19)

The Fouricr transform of the rectangle function is obtained by evaluating the

Fourier integral

20 + 5 1 +3
F{rect(t)} = / rect{t)e *'dt = f eI =
—a -4 —Ja -i
£
The plot of tlic transform F{rect{¢)} is shown in Figure 9.4.
F{rect()}
}
AT
/N
/]
/ \
!
/ \
N / \ SN e
4:1\\ S an 2.1:\\\ M n -

Figure 9.4: Fourier transform of the rectangle function

(9.20)

We will also introduce an abbreviation for this characteristic function. We ¢all
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it the si-function and define it as

Sl ¥

for v 50
sifr) = ¥ (9.21)
1 forv=0

In spite of the value » in the denominator, si(r} is continuous, so ## — 0 corresponds
to the limit that we obtained ar this point from the Hopital rule.

Figure 9.5 sliows the course of si(v), dependent on the dimensionless variable

,!si(v)
/"?\

/N
oy
/1A

Figure 9.5: The si-function

For the entire area under the integral

/ si(i)dy =7, (9.22)

W — 0

This area corresponds exactly to the area of a triangle between the main peak and
the first two zero points to the right and left of » == 0 (see Figure 9.6). This rule is
very practical as it can be also used for any other si-function, whether it is scaled
in the horizontal or the vertical axis

With the si-function, we can very elegantly formulate the correspondence he-

tween the rectangle function and its Fourier transform. By comparing (9.20)
and (9.21), we find that
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Figure 9 6: The area of the triangle corresponds to the integral of the si-function

For rectangles with any width a, we obtain from (4.19)

&

o (9.22)

1
vect(at) o--#— si
w <oogpa(

In Figure 9.7, rectangle functions and their spectra ave represented for different
values of a. Asg the scaling factor a occurs as & multiplier in the time-domain
aned divisor in the frequency-domain, the spectra become wider as the rectangle
finetion becomes thinner. We will sec later that this effect is a general principle.
and occurs with many other functions of time,

9.4.3 The Fourier Transform of a Complex Exponential
Function

The previous Fourler transforins could be solved by evaluating the Fourier inte-
gral (9.1). Thix process is unsuceessful for the complex exponential function

a(ty = e?! (9.25)
as the integral that arises

El}wntﬁ—jwt at = ej(wn—w}t dF

clearly does not converge for w = wy. Nevertheless, the Fourier transform elot
can be given in the form of a distribution. To derive this, we use the si-function
that we have just introduced.

In arder Lo overcome the mentioned convergence problem for integration of an
oscillation of infinite duration, we consider first of all a section of the oscillation
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2}

) :

1
a=0.5

! 1
a=2 ’—_—l 1

; ; p i 2=Jl: 431 ..... e
ry r

Figure 9.7: Various rectangle functions rect{at) and thewr Fowier transforms

with finite duration:

ettt for [t < T
;I."_r{t) == (926)
Q otherwise

The Fourier transform of this can be found easily, and the steps required are the
same as for the Fourier transform of the rectangle function, carricd out in {9.20).
They both lead to a result that can be expressed by the si-function.

A T
Xr{juw) = / (f-’””tﬁ!—'jwtdt:f gllwo—wlt —
T _7
1 T

— et e —uwt

(wo ~ w)

2sinfw —we )"

= 1 - (ej{u.'u_w‘}rlr' — j{wu-‘“w‘)?)

7 j(u..’ - w]

2T si((w — wo)T) . (9.27)

Figure 9.8 shows a plot of this spectrum. It is tlie same as the spectrum shown in
Figure 9.7, but is shifted by wy on the frequency axis.

Sinee the complex exponential function in (9.25) consists of the signal of finite
duration @ (¢). with the limit T » > the spectrum of (¢) 15 also obtained from
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4
o3 A ;7“ .
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P
: i
P
i H |
.l \.l
oY .:u p-){)l'l_ _
. "._-“t"—"-*. o 'a)
b H 23.{ Y
T

Figure 9.8: Spectrum of a complex exponential function of finite duration

Xy (jw) with this limit. If we write X7(jw) with 1" = 2L

L. I fw—w
Xo(jw) = o si (_IE_U)’ (9.28)

we recognise from Figure 9.7, that X (jw) becomes a spike with height, approach-
ing infinity and width approaching zero. for 7 —+ oo (soa - 0). Xr(jw) can
clearly not be represented by an ordinary function, so we ask whether it can he
expressed by a delta impulse. To do this we must test Xr{3u) for the selective
property of the shifted delta impulse (8.15) with the limit 7' — oco. We form the
product of X+{jw) and anether function F{jw), that is constant at w = wy, but
can otherwise be any funciion. For large values of 7', the function X¢(jw) becomes
ever smaller (apart from at wyg}. (sec Figures 9.7 arid 9.8), and so when the product
Xr{jw)F(jw) for T' — oo is integrated. only the valne F{jwg) is contributed:

o0 o)
f T].im Xp(Ju )V Ffw) duw = F(ng)/ Xr(gw) dw. (9.29}

The area under the si-function is, however, the same as the area under an isosceles
triangle with its base betwsen the two zero points next to the maximum of the
si-Nusction (see Figure 9.6). That means here from Figure 9.8 that.

g+ [».u] ) 1 2;

Xrljw)dw = / 2T si{(w — wy)T) ) dw = - 2T o (9.30)
o e 2 T

Equation (9.29) thus becomes

/ 21— ]lim Xy F(3w) dw = Flguwg) . (9.31)
_ T —o

K
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The function 31— limyg o X7 (juw) clearly removes all values of F(pw) except at

Fis

w =iy, That is exactly the property ihat identifies the delta impulse. We can
therefore write

1 i 1 — S,
o o Xr(jw) = 8w - wo). (932)
Combining these results yields
Flerot} = .’F{Tlim zplf)} = Tliu__l Xy (yw) = 2w S{w — wo) . (9.33)

We have now obtained the transform pair for tlic complex exponential function:

14t om0 27 610 — ) - (9.34)

It is similar to the transform pair for an impulse shifted in the time-domain {9.17):
8(t — t) e T, (9.35)

9.4.4 TFourier Transform of %

A further example for a tiine function whose specirum cannot be found by simple
evaluation of the Fourier integral is the function

x(t) = i— . (9.36)

shown in graphical form in Figure 9.9. As the time function 3t ¢ = 0 grows

N

Figure 9.9: Temporal behaviour of the function 1

beyond limit, it is not easy to integrate over this point. It helps to split the
integral into two parts for t <0 and { > 0. The upper integral is solved first for
the finite limits ¢ and 7', with 0 < E < T <« oo. and the lower integral is then
solved correspondingly for —7'and —-€. From the results of these two integrals,
tlic solution can be obtained by the two limits T — o and e — 0, as long as
thew two limits can be evaluated. TIiis procedure is also known as calculating the
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Cauchy’s princaiple volue. For x(t) according to {9.36) the necessary steps are

o -
Flat)} = X(jw) = f Lewtgy = lim / Lemmrgs g / Ly
2 oL X
o [ 2ot ety = im -2y {22 gy (9.37)

To evaluate this improper integral, we can use (9.6), or even better the triangle
rule (Figure 9.6). Please note that a change of sign of w also leads to a change of
sign of the amplitude of the si-function. For w = 0 the calculation is trivial. We
obtain

o sin ot —jr forw =0
Fla(t)} = lim —2;}/ - n -dt = 0 forw=40 . (9.38)
Tooo J ' djrm Torw <0

‘he three different cases for the sign of w can also be expressed by the signum-
function sign{w). We can now give the transform pair in the shinple form

Fo e = jn sign(w) . (9.39)

A purely imaginary spectrum is obtained that has a constant value for both posi-
tive and negative values of frequency w (sec Figure 9.10). Because of the discon-
tinuity, X {jw) cannot be analytically continned The function x(3) = 1 cannot
be absolutely integrated {%.4), although its Fourier transform can be determined.
This illnstrates once again, that if a function can he integrated, that is a suflicient
but not necessary condition for the existence of the Fourier transform.

iX(jw)

jz
n

Figure 9.10: Speciram of the function

—= 1)

9.5 Symmetries of the Fourier Transform

From the examples of Fourier transforms of simple signals that we have looked at
s0 far, we cau see that it is possible to determine the spectra of more complicated
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sigmals without having to do move integralion, if the propertics of the Fourier
transform are known, That is why symmetry relationships are so usefwd. H certain
properiies of a signal are kuown, the appearance of the spectrum can be determined
and vice versa, To describe the symmetries of a signal, we will first of all introduce
the concents of cven and odd functions, and investigate bow they relate to the
corresponding spectra.

9.5.1 Even and Odd Functions

Bven ad odd functions are characterised by their behavionr when the signs of
their arguments arc changed.

Definition 13: Even and eodd functions

Two real functrons x(t) and x,(L) are called even or odd functoms when:

x By = 2.8 (9.40)
To(t) = (=) (9.41)

Every [unction can be split into an even and an odd part

xft) = w4 x,t), (9.42)
where tire terms are given by
roft) = %(L(ﬂ + x(—1)) (9.43)
a
zo(t) = () - «(-1)). (9 44)

With (9.40), (9.41) it is casy to confirm that z.(f) and z,{f) have the assumed
syimetries.

Example 9.3

For the right-sided function x{#) from Figure 9.11, the even and odd torms are
bath bilateral funetions, the swn of which disappears for ¢ < .

The even and odd symmelry that we istroduced here with functions of time
can, of course, also be carried over to functions of frequency w. Even and odd
spectra are identified by

X (jw) = Xo(—y) (8.45)
XU(JW‘) = '_'){n(“‘,?w} {9-16)

The definitions for even and odd functions arc equally valid for both real and
complex signals.
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P xe(1)
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Figure 9.11: Combining the even and odd parts of a function

9.5.2 Conjugate Symmetry

For the real and imaginary parts of complex signals, there are often different
syminetries that can be summarised by the concept of conjugate symmelry.

Definition 14: Conjugate Symmetry
A complex function z(t) has conjugate symmetry when:

o(t) =a*(—t) . (9.47)

!

Here 2* (t)means the complex conjugate of the function x(2).

By splitting z(t) = Re{x(t)} + jtm{xz(t)} into real and imaginary parts, it is
immediately clear that a function with conjugate symmetty has an even function
as the real part and an odcl function as the imaginary part.

Of course, this definition also applies to functions of frequency. Correspond-
ingly, for a spectrum with conjugate symielry,

X(w) =X (—jw) . (9.48)

9.5.3 Symmetry Relationships for Signals with Real Values

We will now use the symmetry relationships just introduced to describe the con-
nection between time signals and spectra, starting with real-value time signals and
investigate how these properties manifest themselves in ttie frequency-domain. We
will apply both operations associated with conjugate symmetry, cne after the other



9.5. Symmetries of the Fourier Iransform 211

to the Fourier integral (9.1) for a real function of time z{):

X = /“:n(t)e"-"“'tdt

X(~ju] = / (et dt

—

X*—ju) = / S Re dt = | (e dt

— L3

As the real function z(t) does riot change when transformed to the complex con-
jugate function #*(¢), the operations cancel each other out. Real signals thus have
conjugate symmetrical spectra

| 2(t) real = X(ju) = X*(~ju) . | (9.49)

As spectra with complex values can be represented as real values of imaginary
and real parts, or alternatively as magnitude and phase, conjugate syminetry of
X{jw) can be expressed by even or odd symmetry of these components

X(w) = X'(—jw) (9.50)
Re{X (3w} = Re{X(~jw}} real part cven. (9.51)
Im{ X{jw)} = -kn{X(-jw)} imaginary pait odd. (952)

Xl = 1X{—jw)| magnitude cven, (9.53)
arg{X{(Juw)} = arg{X(—jw)} phase odd (9.54)

We would further like to know which parts of the time signal correspond to
the real and imaginary parts of the spectrum. Starting with the real part of
the spectrum, with the Fourier integral (9 1) we substitute z = —t for the time
variable. bearing in mind that Re{e™**} = cos(wt) is an even function:

Re{X (3]} = /CX‘JI(t)ccs(wr‘.)dt

-

Re{X(jw)} = ]x:rf(—r)cos(—wr)dr

—0

Re{X(juw)}

o
/ a(—t) coswt) df
o — 2

In the last row we have againset = =1, as the value of the integral does not depend
on the notation used for the integration variables. All right sides are identical, so
for a real function of time with a veal spectrum it must be trne that a () = z(—t).
According to Definition 13. =(¢) is an cven function.
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The ssne deductions can be made for the imaginary part of the spectrum,
which brings us to the conclusion that a real function of time with an imaginary
spectrum must be an odd function. We have now shown the following symmetry
relationships for real signals:

xe(t) real, cven — X{jw) real, even (9.55)
zo(t) real, odd — X {jeo) imaginary,odd. {9.56)

These general principles are revealed by our observations ot the transforms of
certain signals.

Example 9.4
The rectangle fiinction is real and even. The same is true for its spectrum.

rect(t) o--»si (%) (9.57)

Example 9.5
The real and odd function of time % has an imaginary and odd spectrum.

% o—e — jwsignfw) (9.58)
- [

9.5.4 Symmetry of Imaginary Signals

The same deductions for time signals with real values can also be made for
imaginary time signals. The equivalent relationships to (9.55), (9.56) are

x, {t)imaginary, even — X (jw) imaginary, even | (9.59)
rll) imaginary, odd PR X (jw) real. odd. {9.60)

The imaginary function x(f) and its real imaginary part Tm{x{¢)} should not be
confused. For purely imaginary functions z(¢) = jlm{a(t)}.

9.5.5 Symmetry of Complex Signals

The previous results for real arid for purely imaginary signals can now be
united to give the symmetry for general complex signals. Every signal can
be split into its even and odd parts, and its real and imaginary parts, and
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this gives four tcrrns in total for the time signal, and also the spectrum. The
symmetry relationships (9.55), (9.56) for real signals can be used for the real
part, and (9.59), (9.60) for imaginary sigiials can be used for the imaginary
part. The scheme (9.61) can be formed from these, for tlie symmetry betwcen
real and imaginary parts of the even and odd parts of a timr signal and spec-
trum [19]. Although the symmetries seem to get more and more complicated, in
fact, tlie general complex case is surprisingly simple, logical, and easy to remember.

(I} = Re{z.(t)} + Re{zo(t)} + jlm{z.()} + sm{z,{t)}

X(jw)= %{X f__(:f_'_t_«’)} fB-ﬂ{Xo{Jw)}% jlm{z‘f« ()} + 7T { Xo(gw}}

Example 9.6
A complex signal () has the Foirier transform X (i}, What is F{x*(#)}?
It can be taken from (9.61) that changing the sign of the imaginary part in the
time-domain lias the following effect in the frequency-domain:
Fla* (1)) =RefX.{ju)} —Re{X,(jw)} - fm{ X (u)} T 5Im{ X (jw)} .
Using the symmetry of the even and odcl parts this ¢an be written more concisely:
Flz=(t)y =Re{X(—jw)} + Re{X,(—jw)} - jlm{Xc(~jw)} - jIm{Xo(—yw)}
=X*(—jw).
Equation (9.61) yields the important transforni pair

" (fjo—e X7 (= juw)

9.6 Inverse Fourier Transform

The inverse of the Fourier transform is an integral expression that ha:;, a lot o
similarity with the Fourier integral (9.1):

wfty = F HX(w)} = 31; [mIX{jw)E’-?”’fiw. (9.62)
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The cause of this similarity is that both the time and frequency param sters are
real values. The significant differences between the transform and its inverse are
the intcgration variables {time / frequency), the sign in front of tlie exponential
function (—/+) arid the factor 1/27 before the integral. Like the inverse Laplace
transform, the inverse Fourier transform ean rcpresent a superimiposition of eigen-
functions ’* of an LTl-system, but in this case only undamped oscillations are
permitted.

In fact, (9.62) can be interpreted as an inverse Laplace transform (5.34) for
which the imaginary axis s = jw has been chosen as the path of integrntion. This
interpretation is valid if the conditions for X(s) = X{jw}|s=,. (9.9) are [ulfilled;
the region of convergence lor X (s) encloses the imaginary axis and X {3} can be
differentiated any nurnbcr of times.

To verify that (9.62) actually yields the corresponding function of {ime for a
possibly discontinuous spectrum X (jw), we put the definition of X (jw) into (9.62)
in accordance with (9.1), and exchange the sequence of integrations. Thcrc is an
expression (in square brackets) within the outer integral that we can interpret
(see Section 9.4.3) as a delta impulse shifted in the time-domain. In contrast
to Section 9.4.3, the roles of w arid ¢+ have been swapped. With the selectivr
property, wa end up with x{¢). Thus we have seen that the integral in (9.62) leads
to a function of time from which (with (9.1)) X (yw) can be calculated.

1 Q¥ . 1 L] e -
— X(juhed*rdw = = e dr et g =
o /_OG (ju)e?™t duw 5 /—oo [m)r(r)e et dw

1 o K

= 5 ] / ()7 D drde =
Moo f —oc
s 1 )

[=%

_ / [2_?_/ tj,'fwif-*r)dw] s(o)de=

) d (tq: o)
= () (9.63)

This derivation requires that both improper integrals can be swapped, which
is tlie case for normal convergence of intcgrals.

Just as for the Laplace transfoim, tlie assignment of a time signal to its Fourier
transform is unambiguwous, if discontiriuities are foreseen and dealt with (Chap-
ter 4.6.2). Deviations at individual points o cliscontiniiities do not change tlie
value of the integrals in (9.63), and when solving practical problems, this degree
of unambigrousness is sufficient.

9.7 Properties of the Fourier Transform

As well as the symmetry properties that we have already dealt with, the Fourier
transform has many properties that need to be known to take advantage of the
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frequency-domain representation, without having to solve integrals over and over
again.
9.7.1 Linearity of the Fourier Transform

It follows directly from tlie linearity of‘the integration that the principle of super-
position applies to the Fourier transform and its inverse:

Flaf) 19} = aF(J(0)} +bFg(e)} -
FHeF(jw) +dGjw)} = cF YF(jw)} +dF HG(w)}. -
a, b, e and d can be any real or complex constants.
Example 9.7

Tlre Fourier transform of a delta impulse pair as shown in Figure 9.12 can be
obtained as the sum of the transforms of two individual impulses ihat are each
shifted by £z

St+ o) +8(t—17) o—e e T+ = deoswr. (9.65)
u
(1) § X(jw)
[ l E r"/ ) B /
""\ ,"'r N H
= l T 'tr =T oMt S 0
\\ /'lr \\ '_,r
R

Figure 9.12: The impulse pair arid its Fourier transform

9.7.2 Duality

Because of the similarity between the formulae for the Fourier transform and its
inverse. a correspondence helween the frequency-domain and time-domain can
be derived by carefully choosing the arguments of a given transform pair. With
appropriate subtitutions into the integrals for the transform and its inverse, it can
bc shown that for two functions f; and f, that

Hi(t) o—e frlw)
folt) o—w 20fi(-w).

(9.66)

This relationship is called duality.
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Example 9.8
Using the property of duality we can obtain from the relationship (9.23)

Cf W
rect{t) o—s SI(E)
that we already know as the transform pair for a rectangle-shaped spectrum

t
= si(;j) oo Irrect{-w) = 2Wrect{w). (9.67)

Figure 9.13 shows the duality between the si-function arid the rectangle function

4 reck(n) . (%;_)
1
- ST T
__1 1 A7 A @
2 2
1
3 siGz) b 27t rect{w)
2
o—e
o I .
dx - - AT t Al 1 6]
2 2
Figure 9.13: Duality of the si-function and rectangle fnaction
[

Example 9.9

From (9.65) we obtain using the duality property of the Fourier transform of
a sinusoidal function of time:

CO8 Wl oo W[é(w +owg) Fo(w - wn)] . (9.68)

The Fourier transform consists of a pair of delta impulses. For such functions of
time there is a Fourier transform, but no Laplace transform. This is because there
is no analytical continuation into the complex s-plane for the delta impulses on
the imaginary axis.

[
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9.9.3 Similarity Theorem

We saw when dealing with rectangle functions that thin rectangles have wide
spectra, arid vice versa (Figure 9.7). This is also true for all functions of time and
their corresponding spectra.

The substitution ¢ = at and v = w/x in thr integrals of the transform arid
inverse transform show that compressing the time axis correspondsto expanding
the frequency axis, and vice versa. The factor a may be negative, but not complex-:

2lat) o—w ﬁx(-“i) a < RO (9.69)

This theorem has an important impact on the so-called *time-bandwidth product’,
which will be discussed in Section 9.10.
9.7.4 Convolution Theorem of the Fourier Transform

As with the Laplace trapsformn. convolution corresponds to multiplication of the
Tourier transforms:

ylt) = z{i}xh{t) = Tﬁt(f}h(t--r)dr

(9.70)

*—0

Y {w) X(w) Hijw)

The proof is carried out in much the same way as for the convolution property for
the Laplace fransform (compare Chapter 8.4.2).

The most important use is the calculation of the output signals of LT l-svstems.
The Fourier transforms of the impulse response is called the frequency response.
Figure 9.14 shows the relationship bet ween convolution with the impulse response
and multiplication with the frequency response.

Example 9.10

As an example for the use of the convolution property, we find the Fourier
transform of the triangular impulse shown in Figure 9.15, which is defined as a
function of time hy

t+1 for -t <t<0
x{t) = —ft+1 for0<t<l (9.71)
¢  otherwise

Calculating the Fourier transform X (3w} = F{z(t)} with the Fourier integral is
indeed not so difficult. but it is somewhat tedious. It is much simpler to notice that
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x(t)  —|  h(r) = y(t) =h(t)xx(t)
i ;v:
X(Gwy —| H® [ Y(Quw)=H{w)X(w)

Figure 9.14: Thr relationship be

/

tween convolution and multiplication

$x(1)

1

AN

-1

1t

Figure 9.15: Triangular impulse

a triangular impulse is the result of the convolution of twa rectangular impulses.
With Figure 9.16 this can he easily confirmed by inspection. This connection can

L

!
1

I

—

~1/2 1/2 -1/2

172 1 R 1 1

Figure 9.16: Triangular impulse as yielded by tlie convolution of two rectangular impulses

also be expressed by (9.72).

rect(t) # rect(t)

si(—

With the convolution property, (9.73)

= a(t) (9.72)
(0] (0]
¢ .
g) = X(jw). (9.73)

follows immediately. The Fourier transform
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we were looking for is already there:
X (jw) = si? (‘i”é) . (9.74)

Figure 9.17 shows its plot. Asthe triangular impulse is real and even, its spectrum
hag the same properties because of the symmetry relationships.

W] X(w)
Y,

4
4

Figure 9.17: Fourier transform of the triangular impulse

9.7.5 Multiplication Property

By using the duality of F und F~! (9.66), we obtain from the convolution property,
the relationship for the Fourier transform of a signal (¢}, that can be written as
the product of two signals f(t) arid g(t),

-

| i

ft) - glt)

L_Ede}

(9.75)

i

1
50w} = Glw)

as contvolution of the spectra F(jw) and G(jw}.

Example 9.11

As a more detailed example, we consider a typical spectral analysis problem.
The spectrum of two superimposed sinusoidal signals with almost the same fre-
quency is to be represented in such a way that both signals can be easily distin-
guished in the [reguency-domain. The signal can only be observed for a limited



220 9. The Fourier Transtorm

duration, and we wish to determine for how long it needs to be ohserved for us
to able to distinguish the lwe signals from each other. Figure 9.18 shows the two
signals whose superimposition we Will be observing from time —7'/2 to T/2.

Figure 9.18: Sinusoidal signals g1(¢), g2(¢) and ihe window of observation ()

We already know that the spectrum of a sinusoidal signal consists of two delta
impulses on the frequerrcy axis. The location of the impulses corresponds to ihe
frequency of the signal. As both frequencies arc almost the same, the delta im-
pulses will lie close to each other:

g(t) = g {t) +gz(.t) = coswn -+ coswat

‘ (9.76)

fKW):ﬂ(ﬂw—m)+ﬁw+wﬂ+&w—wﬁ+&w+wﬂ).

The finite observation time can be expressed mathematically as multiplication by
a rectangle function in the time-domain. The function describes the finite window
of observation through which we see the sinusoidal function.

f(t)xrect(%) oo F(yw):Tsi(%z) (9.77)

We alrendy know the spectrum of the window: a si-function. The observed signal
is thus

y(t) = F(8) - g(t) = £(2) {a1(0) + 92()]. (9.78)

as shown in Figure 9.19. Tlie spectrum actnally observed can be represented with
the multiplication rule, as the convolution of the spectrum G{7w) which contains
the ideal delta impulse with the spectrum of the window of observation. Because
of tlie convolution with fow shifted delta impulses, the specirum of the measured
signal contains four terms that each have the same form as the spectrum of the
window of observation and are located at the signal frequency.

V(o) = 5 Flje)«Olje) ©.79)



9.7. Properties of the Fourier Transform 221

."I‘\ ';I

i 1 vl .
[ | P L T
bt |I|I Y ’ "2

Figure 9.19: Signal y(t) weighted with the observation window

T . T . T
= lm((w _“"’-)5) + i ((w +w1)rj)
+si<(w - wa)%) + si((w +wz)%)}

Figure 9.20 shows the spectrum of the reference signal for three different widths
of the window of observation. From the similarity property we know that the
wider the window, the thinner the spectrum of the window, that means the longer
the duration d measurement. A window of observation with length T =1.2has a
spectrum wide enough so that the components o both frequencies can no longer be
distinguished from each othei, and appear as a single signal. The two components
first start to become distinguishable at a window width of T = 1.5, but are still
not recogniseable as two separate impulses. Only by significantly increasing the
duration of measurement, for example, to T = 10, can the two signals be clearly
identified. At least several periods of the frequency difference hetween the two
signals must be observed for them to be spectrally separated

9.7.6 Shift and Modulation

If we set one convolution partner equal to §(¢ — z) in the convolution theorem
(9.70), we obtain the shift theorem with z:(t) * §(t — 7) = x(t — ¢):

z(t — 7)o e e TX (jiw) (9.80)

Example 9.12

In Figure 9.21 (top),the equation z(t) =si(wt)o ~ X (jw) =rect(3=) is shown.
The Fourier transform of z{t — 1) and x(t — 5) can be given directly by the shift
theorem:

si(r(t —~ 1)} oo g4 »rect[%) (0.81
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¥jw)

Al T=1,2

-10-9

Figure 9.20: Ypectrum Y{jw) for various observation windows

and
( w
2n

Both pairs arc likewise illustrated in Figure 9.21 {centie and bottom).

si{m(t — 5)) o~ » €79 pect( —). (9.82)

The above example shows axn interesting property of the shift theorem: shift-
ing the signal does not change the magnitude spectrum. as the spectrum is only
multiplied by a complex exponential function.

A shifl in the frequency-domain is described by the modulatzon theorem

e?“otx(t) o—e X (j(w — woy) (9.83)

where the multiplication of a time signal with a complex exponential function is
known as modulation. The modulation theorem is a special case of the multipli-
cation theorem (9.75) for multiplication with

etwit o Ord{w —wp). (9.84)
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x(t) = siizx )

x)(0) = si(z (=1

xy(8) = si(m (£-5))
|

L LWL
T

| X(jew)]

I
10t I

arg { X(jw}}

. |
x o |
|X1(fwi arg{ X, (jw)}
HIT
14 4] - T w
Xg(fw\.'i arg{X,0u))

Figure 9.21: Example of the shift theorem

x(8) = siD
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X(jw)y = rect(%’]
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Figure 9.22: An example of the modulation theoremn

Example 9.13

223
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Figure 9.22 illustrates the effect of modulating the signal z(¢) = si(t) with e’*!,
The time signal is complex after the modulation, so its real part is represented
by the solid line (-), and its imaginary part by the dotted line (- —). Note that
a modulation with frequency jwy = j4 corresponds to shifting the spectrum by
wg = 4 to the right.

9.7.7 Differentiation Theorem

As with the bilateral Laplace transform. there is a differentiation theorem for
both the time-domain and frequency-domain. Differentiation in the time-domain
enrresponds to convolution with é(t):

DO _ (1) o0 (9.85)

With the fransform pair F{6(t)} = sw (derivation in Exercise 9.13) and the con-
volution properly we immediately obtain the differentiation theorem

d"r(f) e Pt T
TR JuX {(jw). (9.86)

As might be expected, it, can be derived from the differentiation theorem of the
bilateral Laplace transform {compare Chapter 4.7.4) by substituting s with jw.
This requires =(#) to be differentiable.

The differentiation of the Fourier spectrum corresponds as with the Laplace
transform to a multiplication of‘the time signal with —¢ (compare Chapter 4.7.7):

—~tzft) o—»

dX (jw) l

o) (9.87)

This theorem is therefore also called ‘multiplicatron with t” Tt can easily be demon-
strated by differentiating the defining equation of the Fourier transform (9.1) with
respect to . (see Exercise (3.14). Note that, it must be possihlc to differentiate
X(jw).

9.7.8 Integration Theorem

Here we are only interested in integirating iu the time-domain. This corresponds
to a convolution with the unit step function

I‘ x(2)dr = z(t) *e(t). (9.88)
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To derive the theorem we need the transform F{e(t)}, which is easy to caleulate
if we split <(f) into its even and odd parts:

. 1 1
sif) = _ P 3 X 989
<(1) 5+ _2.51¢_,n(t} (9.89)

Using the principle of duality and the transform pair 6(f)o -e1 (9.16) and

1o — jrsign(w) (9.39), the even term is obtained as

3{%} = wd{w) (9.90)
arid the odd termn as
1 1 i
Zgiznft = —-. 9.91
}_{ 251t,n({)} T ( )
Thus .
eftyo—ewd{w) + P {9.92)

and using the couvohution theovem, we finally reach the wntegrafion theorem

i
U;x:;;(z}dz o-a X(jw) [ﬂé(u)—i— JLJ = %}—X{jw) +aX(0)8(w) .| (9.93)

The integration theorem of the Fourier transform cannot be obtained simply by
inserting 5 = jw into the integration theorem of the Laplace transform (4.27).
The form thus obtained is incomplete and is only valid for signals with zero mean
X(0) = 0. In fact, the imaginary axis according to (4.27) is not. part of the region
of convergence of the Laplace transform, as integration generates a pole at s =0.
(9.93) can therefore not he analytically continued since it contains a delta impulse
at w = 0 for signals with a non-zero mean.

9.8 Parseval’s Theorem

A further property of the Fourier transform expresses Farseval’s theorem. It says
that the integral of the product of two functions of time can also be expressed
as the integral of the product of their spectra. To derive this theorem we start
with the multiplication theorem (9.75) and write out the Fourier integral for ttic
functions of time and the convolution in detail

[=s

F(Hyg()e ™"t = py F(yGliw — juidv (9.94)

n
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For w = 0. the exponential term ou: the left side of the Fourier integral disappears
and

/ FlOglyde = 51; / F(i)G(—ju)dy (9.95)

For the functions of time f(t) and g(#) we will also permit complex functions. We
can read from the symmetry property (9.61) and Exarmple 9.7 that fn a signal
g(t) and the corresponding complex conjugate signal ¢*(¢) that the relationship
between tlie spectra G{jw) arid G*{(jw) is

g{t} o e Gw)
(9.96)
g*{t) o--e G*(—jw)

From here we ran obtain the general form of Parseval’s theorem for complex func-
tions of time

X i . 1 oo ) o
f Fltyg*()dt = > / Fljv) - G"(jvidy . (9.97)
For g{t) = f(t}, we obtain the easy t0 remember relationship
7 i |
[ |F()Pdt = o f | F ()i Pdw . ‘ (9.98)
n.oc —-X |

To interpret this formula we define the energy of a time signal.

Definition 15: Energy of a time signal
The energy Iy of a signal f(t)is gwen by

5= [ 1.

The reason that this integral is called the energy of a signal becomes clear
when we imagine f(¢), for example, to be a decreasing voltage acress an chmic
resistance. The energy converted to heat in the resistance is proportional to the
integral over the square of the voltage Using the magnitude squared permits the
use of complex signals.

Parseval’s theorem says that the energy of a time signal can be calculated not
only in the time-domain, hut also in the frequency-domain, by integrating the
magnitude squared spectrum. Only the magnitude is involved; thr phase clearly
has no effect on the energy o the signal.
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Example 9.14

As an example of the use of Parseval’s theorem, we will calculate the energy

FE, of the signal
) t ,
xr{t) =4l = | . 9.99
o=a(3) o

o oc.”'). . _ rx.l 22 E - 7 '1-5i]}_2(t/2}
FONES f.;, (Hdt = / si (2) dt = / —E di

—r - —ac

Calculating the integral

directly in the time-domain is possible, but requires some tricks and rearrange-
ments. With the transform pair. (9.67)

si (—;—) o—e 21 rect (w) (9.100)

and Parseval’s thcorem we can calculate the energy much more easily in the
freguency-domain by integrating the rcctangle function:

1 s 2 1 g 2 2 0
. — O .  — < f == . .
E 57 ] P{ (Ju))t dw = 3 f :1!(.21‘1) i T ( 101)

We have used the fact that tlir square of a rectangle function is again a rect-
angle.

9.9 Correlation of Deterministic Signals

The concept of correlation actually originates from random signal theory, which
we will introduce in Chapters 17 and 18, where it, will play a central role. So fa
we have not encountered random signals, and we would like to emphasise that the
following discussion is fivst of 2] limited Co deterministic {(non-random) signals.

Combining two functions of time f{¢) und g(¢) can be more generally formu-
lated than in (9.97). If we consider the product of f{) and g(t), shifted in time by
z, Lhe integral expression formed is a function of the separation in tiinr 7. This
leads to the definition of the cross-correlation function
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9.9.1 Definition

Definition 16: Cross-correlation function

The cross-correlation function of two determpnistic sugnals (1) and g(t) 13

era(e) = [ s+ g (9.102)

Definition 17: Auto-correlation function

Far f{t} = g(#) the auto-correlation function of the function of ftme f{f)

npff(r)zjf(tﬁ—r)f‘(t}dt (9.103)

The cross-correlation function describes how two signals are related. while bear-
ing in mind any possible displacement, The auto-correlation function shows how
similar the components of a time signal are that oncent at different points in time.
We will come back to this later, when we have extended {9.102) to cover random
signals, but the significant properties are already clear for deterministic signals.

9.9.2 Properties
9.9.2.1 Relationship with Convolution
The integral expression in the definition of ¢ross-correlafion (9.102) is certainly

related co the convolution integral. In fact, (9.102) can be changed to a convolution
with the substitution tt = ~¢

o147 = / £+ D (0l = f Fle = V) (et

The cross-correlation function for deterministic signals can therefore also be de-
fined Ly a convolution

o0

B 8) 5/ Ft+ oyg*(thdt = f(o) « g"(—7) . (9.104)

— o
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Likewise for the auto-correlation function

or(D)= [ f0+ 0 @t = iz f (=) (9.105)

—a

Example 9.15

What is the cross-correlation p,, (z) between the output and input of an LT1I-
system with impulse response h(t)?
Evidently,
‘Py:c(f) = wplo)* e*{—1)
= h(z) *2(c) xa*(~7)
= h(2) % pa0(7)
The cross-correlalion between the output arid input of an LTI-system is the same

as the convolution of the anto-correlation of the input signal. and the impulse
response. We will consider an example, with a delay circuit such that

h(t) = 8(t —ty)
where the cross-correlation is a shifted version of the auto-corielation

‘F’y-'c(f) =d{z — o) * PrelT) = Pea(—to).

9.9.2.2 Symmetry

The question of the symmetry of the cross-correlation fiinction is closely related
to interchanging the two functions f(#) and git), because a shift of f with respect,
to g by z is equivalent to a shift of g with respect to f by —z. Exchanging f arid
¢ in (9.102) and substituting variables yields

Vral7) =7 (9.106)

Clearly, ©z,(z) can only be expressed by ¢, and not, by ¢y, itself. The cross-
correlation function therefore has no general symmetry propertics.
For f(t) = g(t), it follows from (9.106) for the complex cross-correlation func-
tion
i) = @3(—7) (9.107)
and for a real function of time f(¢)

wrlT) =pfr(~2) (9.108)
The auto-correlation of a complex function of tirne therefore has conjugate sym-
metry; the auto-correlation of a reel function of time is an even {unction.
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9.9.2.3 Commutivity

While investigating the symmetry properties of the cross-correlation function we
found a close relationship with exchanging the time functions From (9.106) it can
be immediately read that in general

01e(T) # wqr(7). (9.109)

This means that in contrast to convolution, the cross-corrotation is not commuta-
tive

9.9.2.4 The Fourier Transform of the Cross-Correlation Function

"The Fourier transform of the cross-correlation function can be most elegantly de-
termined from the convolution relation (9.104). We need for this a special sym-
metry o the Fourier transform, that as with (9 96), we ean read from the general
scheme (9.61)

glt) oo G{jw)

(9.110)
g(-t) eme G(iw)
With the convolution theorem it follows from {9 104) that
(,Qfg(f) = f(z) & g*(_f]
o o o
. o . .
roliw) = Fleplall = / rglt)e™™ “dr = FQw) - G*(jw)
—4x0
(9.111)
or concisely,
[pra(r) o—s Flj)G* (i) . | (9.112)

For the Fouriel transform of the auto-correlation function this expression can be
simplified to

| ors(e) o—e PG .| (9.113)

Example 9.16

Gencralising Example 9.14 we try to calculate the auto-correlation of z(t) =

si <—3> (9.99). Evaluating the intcgral

f2d) o

Paa(T) = / 2t + r)x{t)dt = [ s (f; r) si (%) dt

—on -0
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15 again so complicated, however, that we would like to find an easier way.

We can read from (9.113) thai the Fourier transform of cur auto-correlation
function is already kiiown from the Fourier {ransform of the si-function. The
auto-correlation function .., (z) then follows by inverse transformation

Flow M} = |[X(Gw)® = 4r’rect(w) (9.114)
@
|
. . T
weplz) = 2msi (5) . (9.115)

To check the results we consider the value at z = 0. Here, the value of the
anto-correlation ., (0)is the same as the energy E, of the signal «

X0

Pre(D) = fr(f)'r*(i)dl = ] la{)|2dt = E,

-G

From (9.115) we obtain with ¢, ,(0) = E, = 2r the same value that we had
determined in (9.101).

9.10 Time-Bandwidth Product

At various times we have seen that there is a close connection hetween the duration
of a signal and the appearance of its spectrum. n Figure 9.18 we made good use
of this property to determine how long we needed t0 measure in the time-domain,
to get a clear result in the frequency-domain. This reciprocal connection hetween
the length of the signal in time and the widib of the spectrum is clearly not limited
to the rectangle function. Tle similarity theorem (9.69) says that a stretched time
signal corresponds to a compressed spectrum (arid vice versa), for any time signal.

We now wish to investigate this connection more closely. We are cspecially
interested in the relationship between the period of a signal in time and the width of
the corresponding spectrum. The width of the spectrum is known as the banduwsdth,
Lt we must make it clear what exactly should be understood by the ternis period
and width.

In Figure 9.7 it is evident what is meant by the duration of a rectangle function.
The corresponding spectra are all, however. strelched out, infinitely. Despite this,
the spectrum of a rectangle funclion does seem to become wider. in a certain way,
when the impulse becomes shorter. There are various possiblities t0 define the
length of a signal and its bandwidth for general signal. We will consider three of
them, and will see that they all lead to the same fundamental principle.
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9.10.1 Equal-Area Rectangle

The first method for defining the duration of a signal and its bandwidth is shown
in Figure 9.23 for a signal =(¢) that is real and symmetrical. Crmsequently, the
Fourier transform F{z(t)} = X (jw) has the same properties. We understand the
duration Dy of a signal z(t) as the duration of a rectangle function that has the
samme area and height as 4 (t)itself It the time zero is chosen so that it coincides
with the maximum value of x(t) then the height of the rectangle function is equal
to 2(0). From the equal-area requirement for the signal (¢) and rectangle of width
Dy and height x(0)

/ 2(8)dt = D(0)

hate o]

we directly obtain the signal duration D,

—0

L —
X(0)

Dy = E;—])/Nx(t)dt : (9.116)

The area, under the signal z(t) cannot only be determined by integration, but also
by reading the value of the spectrum at w = 0. This is

X(0) = f xft)e™ 7 dt = / x(t)dt .
oy w=0 -

The signal duration cau therefore also he expressed simply by the ratio

X0
()
+ X(jw)
TN
B, |
~pe- S——— -
t -~ (11

Figure 9.23: Duration )1 and bandwidth B

We understand the width By of a spectrum X (jw) as equivalent to the width
of it rectangular spectrum, that has the same height sand area as X (jw) itself.
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Proceeding in the same way as before, we can obtain the bandwidth By ay

1 =

———

2mz(0)

The area under the spectrum X (2w} can also he expressed by the value of the
signal x(t} at £ — 0. and it is then

w(0) = 5}: Xfwter dw Ji o

AT

For the bandwidth B; therefore,

_ z(0)
Bl = 27 ){(O) .

Duration I}; and bandwidth £, clearly have a reciprocal relationship, so for theix
product

Dy B = 2n. (9.118)

The product Dy By of duration and bandwidth is called the tsme-bandundth product.
From (9.118) we can see that:

i The tine-bandwidth product is constant.

This is true fur the definitions of duration and bandwidth that we have chosen
here: equal-area rectangles for all real and symmetrieai time signals.

9.10.2 Tolerance

A diffexcnt possibilty for defining the duration and bandwidth uses tolerance pa-
rameters. Figure 9.24 shows examples fox a signal and its spectrum. Outside
of the duration Ds, the magnitude of the signal x(t) is always less than ¢-times
(0 <g < 1) its maximum value:

|'r:(£‘)E < g max|x| Vit & [to.to + Da] . (9.119)
The bandwidth Bz is defined accordingly
B,
X ()] < g max| X ()] Vel > (9.120)

Tolerance parameters of this kind ave common in filter design. They permit
general statements to be made about a signal or its spectrum, even when the exact
behaviour is unkown. From the similaiity theorem, the time-bandwidth product
Dy B, for a certain value of ¢ only depends on the form of the signal x(¢). A fixed
value or lower limit is unknown in this tasc
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' J((E) 1 |XUC{])
max lx ; max | X]
T
2 A i
5 “
- 7 g ;"
bos s 4;/ p //j g,
/, .
q Y, \J_% . % q %%Zf
’/% 7 JR N w
/-—Dz——-‘/ =
/]

Figure 9.24: Example of 1olerance parameters

Signals of the form

2(t) = oot

Example 9.17

are called Gauss tmpulses. Their transform pair is (see Appendix Appendix B.3)

€

2,3 T 2
—t !
e [EI }

&
From the condition

e—(xj(f):!/'z)z =

we obtain )
Dy = ;{,\’_l“q'

Note that ln g is negative.

1oy 2 g
ﬁ_% NS

o o
By =4av~Tng
arid for the the time-bandwidth product, the value

D-_}}B‘g = —81ﬂq 5

e TE

(9.121)

is constani for any given ¢. If ¢ is made smaller. the tolerance paramsters become
stricter, and the resulting time-bandwidth product D> Bp for Gauss impulses is

increased.
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9.10.3 Second-Order Moments

A third method for defining the signal duration and bandwidth can be obtained by
using second-orclcrmoments for the magnitude squared of the signal and its spec-
trum. This definition is motivated by analogies with random signals or mechanical
syStems.

For simiplification, we normalise the signal x(¢) that we are considering. so that
it has energy E, = 1. We are assuming that

/i le (22 dt = %; ] 1X (jw)|?dw = 1. (9.122)

The duration [y can then be defined as

Dy = [ (t ~ to)2|w(8)|2dt , (9.123)
where o
ty = f tl(t)?dt (9.124)

is the first moment of |&(¢)]* It corresponds to the centre of gramty in mechanics.
if the time dependent variable is viewed as corresponding to position {e.g the
distance along a beam), and |z(£)|* as density. In this analogy, (9.123) is the
moment of inertia. If the reader prefers the probability theory analogy. |z{t)|?
can be interpreted as the probability distribution independent of £, (9.124) as the
mean arid (9123} as the standard deviation.

The bandwidth Bj is defined by

B;; = . / (U-’ - wn)z ¥ |X(.?“J)Izdw (()] 25)
with o
wy = [ w| X (jw)|?dw . (9.126)

Using Parseval’s theovem for [#(¢}]? and |2/ (¢)]? and Schwars’s equation, it can be
shown [5}, that the time-bandwidth product is

DBy > \/g (9.127)
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The exact value of DBy depends on the form of the signal 2(t). The minimum
is found for a Gauss impulse [5]. Because of formal analogies with quantizn me-
chanics, this eguation is also called the uncertanty relation.

As a Gauss impulse hag a particulsrly good time-bandwidth product L4558
{9.127}, it is emploved whenever it is important to pack as much energy as possible
into a small frequency band over a small amount of time. This is. for example, a
typical demand of a digital transmission system, In short-time spectral analysis,
good time and frequency resolution is reguired at the same time, and Gangsian
windows are widely employed.

9.10.4 Summary

From the various definitions of duration and bandwidth and the results obtained
we can draw somne important conclusions,

Duration and bandwidth of a signal are reciprocal. It is therefors not possible
to find a signal that has any desired short duration and at the same time auny
desired small bandwidih. Shortening the duration of the signal always increases
the bandwidth. and vice versa.

This statement is very important for signal transmission and speciral analysis
{see Example 9.11). 1t is formally related Lo the uncertainty relation from quantum
utechanics.

9.11 Exercises

Exercise 9.1

Calculate the Fourler transforms of the tollowing signals with the Fourier inlegral,
as long as it converges. For comparison, give ajso the Laplace transforms with the
regions of convergence.

LY

a) x(t) = (t) el
b) (1) = rect{0,1¢)
¢) w(t) = 6(—4)
4} a() = (1)

e} T(f) = Q__?wul‘_

Note: b) Properties of the Laplace transform are in Chapter 4. ¢} Rules for
ealculations with the delta impulse are in Chapter 8.3.4
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Exercise 9.2

For which parts of Exercise 9.1 can the Laplace transform be used to caleulate the
Yourier transform (see equation (9.9))7 Justify your answer.

Exercise 9.3

(ive the Fourier transforms of the signals in Exercise 9.3, whose Fourier integrals
do not have convergence, using generalised functions. You will find some already
known transform pairs and some properties of the Fourier transform useful.

Exercise 9.4

i
Lvaluate F {—t—w} using the Fourier infegral (9.1).
Note: See Section 9.4.4 and use a suitable substitution.

Exercise 9.5
Let 2(t) = si{uwyt).
a) Determine wo so that the zeros of (i) lieat t =n 4w, n e Z\ {0}
0
b} Calculate ] () .
—oo

¢) Sketch z(1) for this choice of wy.

Exercise 9.6

Evalnate the Fourier transform of @(t) = si(10x{¢ + 7)) and sketch for 7' == 0.2:
a) |X(jw}| and arg{ X (jw)}
b} Re{X(3w)} and Tm{ X (jw)}

Note: displacement: rule.

Exercise 9.7

Find the functions of time that correspond to the following Fourier transforms:

. S5jw + 5
Xiljw) =
1) (Jw)? + 2jw + 17
. sin( 2w

D

Xs(jw) = (i‘@ﬁ )
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Exercise 9.8

What symmelry does the spectrum have for a) a real signal and h) a purely
imaginary signat?

Exercise 9.9

You are given the transform pair z{tjo—eX{jw) , x(t} €. What are the Fourier
transforms of a} yo(t) = z{—t), b} y(t) = z*(t} and ¢) y.(f) = a*(—t), expressed
with X ({j)? Use the symmetry scheme {9.61).

Exercise 9,10

The signal z(t) has spectrum X(jw). With amplitude modulation, y(#) =
(2{t) + m) sinfwpt). Give Y(3w) dependent on X (jw) and sketch it.

X(jo)
d h\
e o

Note: Analyse sin{wrt) with exponential oscillations and use the modulation the-
orem.

Exercise 9.11

Calenlate ¥ (jw) from Exercise 9.10 with F{sinwrt} and the multiplication theo-
ren.

Exercise 9.12

Use the duality principle to belp calculate
a) Flnd(t) + %)
b) F{=t
c) Fisign()} .

Note: the dual transform pairs can be found in Sections 9.2.2, 9.3 and 9.4.4.

Exercise 9.13

Confirm the transform pair §(¢) o jw used in Section 9.7.7 (differentiation the-
orem) by putting it into the Fourier integral {9.1).
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Exercise 9.14

Prove the theovern ‘maltiplication with £ (9.87) by differentiating the Fourier
integral (9.1).

Exercise 9.15

Determnine the Fourier (ransforin of the triangular funciion shown
a} by usging the differentiation theorem of the Fourier transform,

b} by multiplying the speciral funciions of suitably chosen rectangle impulses,
whose convalution gives the triangular funetion.
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10 Bode Plots

10.1 Introduction

We have already pointed to the elose connection between the Laplace transform
and the Fouricr transforma, at the start of Chapter 9. In this chapter we introduce
a classical method to determine the magnitude and phase of the Fourier transform
of a gsignal from the pole-zero plot of its Laplace transform. It is mosfly used
to describe svstoms so that we can refer Lo the systermn function instead of the
Laplace transform of the impulse response, and the frequency response instead of
the Fourier transforin.

Bode plots are used as a fast way of finding the approximate frequency response
from the poles and zeros of the system [lunction. At one time, Bode plots were
the engineer’s standard melthod for representing a frequency response in graphical
forne. They would always have logarithmic graph paper ready for this task. buf
of course, this is no longer necessary, as computers can draw {requency response
plots faster and more accuralely. Bode plots are, however, a marvellous way of
developing an intuifive understanding of how the location of the poles and zeros
ol ihe system function affect the frequency response, and it is therefore important
{or developing and analysing sysiems.

The fundamoental connection between the system hanetion and the freguency
responge i given by the relationship (9.9}, that we can also write here as

FIhD)} = Hjw) = H()l,oy, = LI, (10.1)

As stable systems only have decaying oscillations, all peles must lie left of the
imaginary axis of the s-plane. The lmaginary axis § = jw is part of the region of
convergence of L{h(¢)}, so the Fourter and Laplace transforms can be set cqual as
in (9.9}). Anyway, in Chapter 9, we had introduced the Fourier transform with jw
and not w, so hetween the [requency response If(jw) = F{h(t}} and the values
of the system function His} = L{A(t)} for s = jw, we do not have to niake any
changes in the notation.

Bode plots represent. the frequency response as split into magnitude and phase

H{jw) = [H(w)| - ") = |H(Gw)] - e Meld it

with the following properties
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1. The logarithm of the magnitude {H (jw)| is plotted against the logarithm of
the frequency w.

2, The phase @(jw) = arg{H(yw)} i plotted linearly against the logarithm of
the frequency.

For transfer functions in rational form, approxirate asymptotes {or the plots can
e drawn very quickly since from

HU"‘-’ - SOm)

Hiwy=KZ — — K>0 (10.2)
TG~ 5pn)
follows
log [H{(3w)] = 3 logljw = sam| — D l0g|jw — spu|+logK
(10.3)
waw) = Yargljw —sem) — 2 arg(jw — spn}

The logarithm of the magnitude and phase can thus be separately determined for
each zero and pole, and the individual magnitudes can be added together when
drawn. A logarithmic frequency axis makes it casicr to get an overview of multiple
decades. Likewise, for reasons of clarity, the ordinates for log |H (jw}| are marked
in decibels (dB}, ie., we write 20708 4 | H (7))

In the following sections, we will first show the representation of single poles
and zeros, and then put the partial results together as cowmplete Bode plots.

10.2 Contribution of Individual Poles and Zeros

We will start with an example, in which we wish to determine the contribution of
a real pole at § = —10 with the frequency response

1 rod

B = 5 = 5r 1

(10.4)

F=pw

By substituting different values for w we obtain the value for |H (jw)|, arg{H (jw}}
and 201og 5 [H {jw)], from Table 10.1. The magnitude frequency response is shown
in Figure 10.1, in linear and iu double logarithmic representation. The linear
representation shows neither the behaviour al low [requencies (0 < w < 10}, nor
the behaviour at high [requencies {w > 10} particularly clearly. In contrast, the
double logarithmic representation makes it clear that the magaitude frequency
response can be approximated by two asymptotes: for w < 10 the magpitude
frequency response is approximately constant and for w » 10, it decays by 20
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Table 10.1: Magnitnde, phase and damping of H{jw) for varions frequencies w

w | 1H(Gw)] | arg{H(Gw)} | 20logy, [H (yw)]
0 0.1 0 -20dB
10,0995 —5.71° —20.044B
2| 0,0981 —11.31® ~20.17d8
|H (7w} linear 20108, 1 H(jw)]  logarithmic
[«B]
0.1 -20
-30
40
-50
0 100G 200 300 400 500-_ @ 101 100 _?67_132 “?6;”_’ “

Figure 10.1: Linear and double logarithmic representation of the frequency response

dB/decade. The frequency w = 10, where both asymptoles meet, corresponds 1o
the magnitude of the pole at & = —10 on the real axig. It is also called the cut-aff
Jreguency of the system,

The exact and the asymptotic behaviour below, at and above the cut-ofl fre-

quency is summarised in Table 10.2 [or a system with a real pole at 8 = —a. The
system function is

. 1
H(S}xm, a0

The numerical values of the magnitude [reguency correspond to the value o = 1)
from {10.4); the phase angle is correct for any real poles.

75> Or in logaritlunic form 20log,y H(0) = 20 x (=1} = —20 dB. The phase aal‘:gle
is 0

At rising frequencies no sipnificant variations from these values are obtained,

At w = 0 the frequency response is purely real and has the value H{0) = L =

F
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Table 10.2: Table of values of H (jw), damping and phase

Frequency H(yw) Damping Phase
=0 o —20 dB 0°
Y= ~ 10
w < 0.1la = (0°
1 1 )
RY— e —-20dB
w<a - =
1 .
w=a —-23 dB —45°
Jo+a
1
w>a R — —20 dB/decade
jw
w > 10a sz —90°

to about w = 0.1a At this frequency the phase has the value
. , o 0.1a o
©(j0.1a) = arg H(j0.1a) = — arctan — = —arctan 0.1 = —6° .

The magnitude of the frequency response first varies significantly from the value
at w = 0 at the cut-off frequency w = a, and is given by

1 1 1 1
|H(ya)] = N i 7 a = '\/7211“0”

The phase here is

a=10.
) a
@(ja) = —arctan — = —arctan 1 = —45?.
For w > a the value of a® in the magnitude trequency response
; 1 1
| ) VaZ+w? w
can be neglected compared to w?, so that it is then decaying reciprocal to w.
In the double logarithmic representation, because of log |H(jw)| = —logw,
a linear relationship between log|H (jw)| and logw is obtained. Increasing the



10.2. Contribution of Individual Poles and Zeros 245

frequency by a factor of 10 (one decade) then leads to a reduction of log [H(jw}]
by 20 dB. The magnitude frequency response is said to decay linearly by —20
dB/decade.

The phase reaches the value

10
(7100} = arg H(§10a) = — arctan — = _arctan10 = —84°
a
at w = 10a. For w — o0 it becoines —90°,
1t is obvicus that the shape of the magpitude frequency response and the phase
can be described approximately by a fow rules.

¢ The magnitude frequency respensc is constant for frequencies below the cut-
off frequency w = a, and afterwards it falls at —20 dB/decade. kts exact path
runs underneath the asympiotes and its maximum deviation from them is 3
dB, at the cut-off frequency of w = o.

e The phase has the constant value 0° for w > 10a. Between w = 0.1a and
w = 10, the phase decreases linearly with the logarithm of frequency. At
the cut-off frequency the phase has the value —45° exactly.

The greatest variation between the exact path and the asvmptotic approxi-
mation is about 6% and it occurs at w = 0.1a and w = 10a. Figure 10.2 shows
the asymptotic approximation {by solid lines) and the exact path (dashed lines)
for @ = 10. The advantage of this representation is that the exact path can be
sketched from the asymptotes and the known deviances at 0.1, o and 10a.

magnitude phase
20 log |H(jw)| arg { H(jmw)}
-2008 : 0 | i |
] ; |
-23dB
{ 45° i:\_N} \\jﬂw
! POV I O
| | ; i
+ l * w i L l £ w
1ot 100 10 101 10¢ 101 102 109
e ", - — 1
Figure 10.2: Bode plot for H (s} = T

For & real zero, the same rules apply with a few deviations

* The magnitude frequency response climbs above the ent-off frequency at 20
dB/decade.

¢ The phase climbs between w = 0.1¢ and w = 10a [rowm 0° to +00°,
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The plot for a real zero can be obtained from that for a pole by flapping the
drawing along the horizontal axis. Figure 10.3 shows the corresponding runs for a

zero al 8 = —a = —10, that ix for a transfer function of the form H{s) = 5+ 10.
magnitude phase
20 iog |H(jo)] arg { Hjor})

&)

Figure 10.3: Bode plot for H{g) =5 + 10

10.3 Bode Plots for Multiple Poles and Zeros

After the detailed examination of the contribution of individual real poles and
7eros in the last section most of the work required to draw a Bode plot for systems
with muitiple poles and zeros has already been done. As systems with multipte
real poles and zeros (10.2), (10.3) can be writien as the sum of the contributions
of the individual poles and zeros, we only neecd to determine the asymprotes for
Lhe peles and zeros and put them together to form a complete picture.

We will explain the procedure for the system function

g+ 1000 1 1

H(s) = .
(s) S+10 s+10

The deuble pole will be treated as two simaple poles. The eut-off frequencies are
w = L1000 for the zeros, and w = 10 for both poles. Figure 10.4 above shows the
logarithmic representation of the magpitude frequency response from the rules in
the last section. The coutributions of the poles correspond exactly to the system
function {10.4), that we have already dealt with in detail. The coutribution of
the zero can be given immediately by twrning upside down the contribution of
the pole above. Because of the preater cut-off frequency of w = 1000 it iy shifted
two decades to the right. The value of the constant asymptote can be most easily
obtained for w = 0 to 20log,,, 1000 = 60 d13.

In Figure 10,4 below, the phase plots are shown. The phases of the poles here
are also already kiiown. The phase of the zero can be obtained, again by flapping
the plot of the pole as above, and by shifting two decades to the right.

If we add cach of the logarithmically represeunted maguitude frequency re-
sponses and the linearly represented phases together, we obtain the complete
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20 log |H{(jw)

[d8] 4 [dB} [0B] 4
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Figure 10.4: Putting together o Bode plot for muliiple poles aud seros.

Bode plot, as shown below in Figure 101.5. The double pole as the sum of
two sinple poles leads to a decay of Lthe magnitude frequeney response by
2 x (-20dB/dvcade}) = —40 dB/decade, from the cut-of frequency of w = 10
In the same way the phase decreases between (L1 x 10 = 1 and 10 x 10 = 100 by
2 % Gl)? = 180° from 0” to —180°.

20 log [H () arg{H (jw)}
4 ¢
20 dB |
N N o 1101001009
i 10 4001000 *w R

Ty L
-60 dB

-180%-

5 -+ 1000
T T+ 10y

Fignre 10.5: Complete Bodu plot for H{s) =

The zevo is first noticeable in the Bode plot of the magnitude at the cut-off
frequency of w = 1000. Its slope of 20 dB/decade added to the countribution of
the double pole, —40 dB/decade leads 1o a decay of —20 dB/decade for w > 1000.



248 10. Bode Plots

The increase of the phase of 90° between 0.1 x 1000 = 100 and 10 » 1006 = 10000
leads to a total phase of —90° for w > 10000.

10.4 Rules for Bode Plots

We will now summarise the discussion about determining Bode plots with some
simple rules for the magnitude {requency respouse and the phase. They apply
to poles and zercs on the real axis of the left half of the s-plane. The distance
separating them should be great enough so that they do not mutually influence
each other in the region of the cut-off frequencies . We can see from our previ-
ous discussion (see Table 10.2) that a factor of 100 is sufficient difference. The
limitation to real poles and zeros has hisiorical reasons. As Bode plots are very
eagy to draw under these conditions, they are the most widely used. Extension to
coriplex pairs of poles and zeros is covered in [urther sections.

The following rules also include the case where a pole or a zero lies at 5 = (.
In the logarithmic form of Bode plot, the cut-off frequency is not visible at w = 0,
however, 50 only the contribution right of the cul-off frequency appears, that is
the gradient of £20 dB/decade for the magnitude frequency response and +90°
for the phase.

10.4.1 Magnitude Frequency Response

1. Determine the location and order of poles and zcros.
2. Draw axes and plot cut-off frequencies.

3. Start ab small o
a) no pole and no zero at ¢ = — gradient, 0

b) pole at s = ¢ — pradient -20 dB/decade
¢y ero at 5 =0 — pradient +20 dB/decade

For multiple poles or zerns use muitiple gradients.
4, Straight line to the next cut-off frequency.

5. Pecrease by 20 dB/decade for sach pole, increase by 20 dB/decade for each
zero, then contimie with step 4 until all cut-off frequencies have been finished
withL

6. Label the vertical axis: calculate |H(jw)| in a region where the Bode plot is
flat.

=1

Round off cut-offs by £3 dB {or multiples of 23 dB for multiple poles or
ZOTOS ).
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10.4.2 Phase

1. Determine the locatinpn and order of poles and zeros.
2. Draw axes and plot the cot-off frequencies.

3. Start at small e
a) 1o pole and no zero at s =0 —  phase 0
b) pole at s =0 —  phase ~90°
¢) zero at s =0 —  phase +90°

Multiple poles or zeros have multiple phase angles. DBear in mind that a
minus sign before H(3w) is a phase offset of 180°,

4. Straight line to G.1x the cut-off frequency.

5. Fach pole subtracts 90°, cach zero adds 90° in a region from 0.1x the cut-off
[requency to 10x the cut-ofl frequency. Continue with step 4 untll all cut-off
frequencies have been dealt with.

6. Smooth the phase sketch. Round off about 6° ai 0.1x the cut-off frequency
and 10x the cut-off frequency (or the corresponding multiples for multiple
poles or zeros).

10.5 Complex Pairs of Poles and Zeros

For complex pairs of poles and zeros there are no simple rules as with veal poles
and zeros, because the cut-off frequency depends on both the real and imaginary
part of the pole or zero.

If the imaginary part is small compared to the real part, a complex pair of
poles can be approximated as a double pole on the real axis, because then the
cut-off frequency is alimost exclusively defined by the real part. The equivalent is
also true for pairs of zeros.

If. on the other haud, the real part of a pole is small compared to the imaginary
part, the eut-off frequency depends almost exclusively on the imaginary part.
The Bode plot with the corresponding cul-off frequency can be drawn as before.
As we are dealing with two poles, this amounts to a gradient above the cut-off
frequency of —40 dB/decade. The behavionr at the cut-off frequency depends
ou the relationship between the real part and the imaginary part. A sufficienily
large imnaginary part in relation to the real part creates a resonance thal becomes
stronger as the pole nears the imaginary axis. The equivalent is also true for pairs
ol zeros.
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Example 10.1

As an example we will consider the magnitude frequency response and the
phase for the system function

_ 1
H 8 =—-
&)= T o104
with poles at
§=—04247.

The exact behaviour is depicted i Figure 10.6.

$ 20 log [Hijw
gt (2 Resonanz umso starker,
o~ """ j&ndher Paol an imaginérer
QAR | - m oo o o 2 Achse liegt
. \-\
20 dB | | N l40 dB / Dekade
| AN
40 dB + ; > —-
N 0.1 1 10 100
4 arg {H(jw)}
0.1 1
0° e 10 190 o o
A
\\|
i
i
1800} e

IFigure 10.6: Bode plot for a complex pair of poles

The cut-off frequency is in this case mostly determived by the imaginary part
and is located at w = 1. To its left the wagnitude frequency response is approx-
imately constant at —20%lg,,1.04 =~ § dB. To the right of the cut-ofl frequency
there is a linear decay of —40 dB/decade

1
20log, |H (jw)| = 20]og, == —40logpw -

The form of the resonant peak depends on the distance of the pole from ihe
imaginary axis. The phase decreases in the region of the cut-off frequency from
0” to —180°, and the exact form of its path near the cut-off frequency nmst again
be determined by the distance of the pole from the imaginary axis. -
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If ¢ither the real or imaginary part may not be neglected in favour of the other,
there is no simple method of finding the cut-off frequency and drawing the Bode
plot. We can in fact look back at the equations (10.3) and determine the distance
of the poles and zeros, and the corresponding angles graphically for each point of
interest an the imaginary axis. Figure 10.7 shows the situalion for a pair of poles
and an arbitrary point on the imaginary axis. The distance to the poles and the
corresponding angle can easily be read from the plot.

ajeo
L

i

{4

Figure 10.7: Pole-zero diagram for a compiex pole pair

Example 10,2

As an example we will examine the systen: function

. 142
(b '4‘5)

Hs) = . _
RN P17 )

with the pole-zero diagram from Figure 10.8

jo

X+ 2]
o e
1 a

xt -2

Figure 10.8: Pole-zero diagram for the given transfer funclion

To estimate the magnitude frequency response we begin by considering the
value of Lhe contribution of the system function at w = 0. From the pole-zero
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plot we recognise thal at w = 2 there is a resonant point. We thus calculale the
magnitude for this point from H(s). As the number of poles is by one greater
than the nuruber of zeros, the wagnitude frequency response for w 3 2 falls at
20 dB/decade. To confirm this we determine the magnitude at w = 10, In order
to approximate the path more accurately, we caleulate the value for v = 1 as
weil.  The distances in equation {10.3) ave calculated from the pole-zero plot.
As is evident in Figure 10.9, the following approximate values are yielded, if the

Figure 10.9: Estimating the lengths for various w

distances of the zeros are multiplied and divided by the distance of the poles:

2 x4 T
[H{50)| == %x2x2=:ﬁ = —276dB
12x1.2 1 .
o= - ~- 2 -10d
HH DI 15x1x3°3 B
4
H(2)) » —— — =16 = 41dB
G2l 25 x4x% 4
10 % 10 _
LH (510)] mg—&—ﬁmo.z = ~20dB. (10.5)

For the phase plot we need the phase al w = 0 and recognise from the pole-zero
diagram that due to the pole 5 = — -}; +24 the phase changes sharply around w = 2.
Further, the phase of H(s) for w » 2 takes a value of —90°. Cousidering this,
we can estimate the phase at the following points with the pole-zero diagram, as
shown in Figure 10.10. We obtain

(jOy = ¢
(1) = 2% 60° — 30° + 90° — 96° = §0°
2(j2) ~ 2 x 80° — BO® ~ (7 — 00° = 20° . (10.6)
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w=10

X
L oo

=1

Figure 10.10: Estimnation of the phase for various w

w=2

283
jo jo
360 o 1 l_g[)o
30° 2607
—_— —-
o) (e g

In Figure 10.11 our estimates are displayed with the exact frequency response
|[H{yw}|. The estimates are marked as crosses. Likewise, our estimates of the

phase as displayed with the exact values for comparison in Figure 10.12.

20 Tog |Hijo ) 46dB
'y %
0dB | o
/" i \\\
-10dB + % i|
.| L | . -go dB / Dekade
waey—— L
b : o - m
0.1 12 10 100

Figure 10.11: Exact magnitude and estimates for various w

arg { Hjw)}
'

90° 1 K,

,/

;,(
0" —f———= — e @
0.1 12 10 100

a0 1 e e e LT e

Figure 10.12: Exact phase and estimates for various w
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For second-order systems with a eomplex pair of poles very close to the imag-
inary axis, the magnitude response can also be expressed directly by the denomi-
nator coefficients.

The polezero diagram for system function

32

His) = +———
5) 8% 4 2oy + w{’}

with poles
s=—atid, o<

s shown in Figure 10.13. Under the stated condition o < 3 the dencminator
polynomial takes the form

S+a—JoHs+a+j8) =6 + 208+ (0® +8%) = s* + 208 + 2.

The resonant frequency is

wy & 3

4 jo
X118
(2)

1
L

Gy

X 1B

Figure 10.13: Pole-zern diagram with poles very near the imaginary axis

The magnitude response plotted in linear form is shown in Figure 10.14 for @ =
0.1 and 3 = 1. This kind of frequency response occurs for all escillating systems
with jow damping and is called a resomance curve . A measure for the resonance
is the width of the resonance cirve 3 dB below the peak. It can be confirmed that
the end points ocewr at w &~ F + o and Lhe width is therefore Aw = 2. This
can also be illustrated easily as in Figure 10.13, if a triangle is drawn between
two points § + « on the imaginary axis and the pole. A dimensionless quantity,
known as the Q-factor is obtained by relaling Aw to the resonant frequency wy.
The Q-factor is given hy

Q=25 L

T Aw 2
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Our example in Figure 10.14 has @-factor ¢ = 5. The resonant peak lies at ¢
times the value of [II{jw)} for w —+ oc. This can be clarified by Figure 10.13, where
as in (10.5) for @ = & the product of the disctances between the zeros (= 3 x 4)
is divided by the product of the distances between Lhe poles (= o x 28}

& IHU(U)' AT

Figure 10.14: Resonance curve of the system

10.6 Exercises

Exercise 10.1

For the [bilowing system:

H— § i

How much amplification does the system have in dB, if
a) ug = 104,
b} g = 10% 4,
¢) uz = v2u
d) ug = 002w,

e tg = —~2uy ?

Exercise 10.2

How much amplification in dB does a system have, if the output power is a} 64
times or b) 2 times the input power (the input and cutput resistances are equal)?
First caleulate the relationship between input and output voltage.
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Exercise 10.3
. 1000
For H{8) = —————
o His) = g
of H{s} in dB for the frequencies w = 10, k=0,1,....5. The complex valies of
H{s) values should be given in the form a + jb.

calculate the the amplification of H{s¢) in dB and the phase

Exercise 10.4

Draw the amplitude and phase diagrams for the Bode plot of H(s) = -(—S_—E——llob—)
s(s

To find the appropriate scale for the amplitude axis, calculate the amplification at

w=10.

Exercise 10.5

Praw a pole-sero and phase plot. from the following ampilitude plot.

20 jog ||
)
0dB e * e e
[ :
_40 dB _— .‘_ _— ’ e ———
.
01 1 010 1 w

Exercise 10.6
A system has the impulse response h(t) = ! aft) ggge_f'e(t)
A syute s the impulse response h(f) = —r=pd(t) — ooy .

a) Give H(s) and draw the Bode plot, ie., amplitude and phase plots with
appropriatety labelled axes.

b} Give the output signal y{t) of the systen for the put signal 2(¢) = cos{wyt)
at the normalised frequencies wy = 0.01,1,10 and 105,

Exercise 10.7
2

8
———10—):5, use the

(s r

a) Draw the amplitude diagram of the Bode plot for H{s) =

frequency w = 100 lor labelling the axis.

b) By what percentage does the exact amplitude differ from the one in the Bode
plot at w = 100 and w = 10007
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¢) By how many dB is it rounded off at the cui-off frequency w == 107 Exactly
how mmch amplification is yielded at w = 107 Give the diflerence fromn the
rounded value in the Bode plot as a pereontage.

Excrcise 10.8
s i . ]
(5 + 1) and Hy(s) — — 5. Where do the

(¢ +1)
araplitude plots of A, and Hy differ?

Draw the phase plots of Hy(s) =

Exercise 10.9

A system has the following transfer function:

524+ 1.1s + 0.1
% 4 101157 + 11010s + 10000

H{s)=10%.

a) Draw the pole-zero plot for this system.

b} Draw the magnitude and phase components of the Bode plot of H{jw) with
appropriate labelling of axes. What behaviour does H(s) show? Read the
maximum gain and the frequency or frequencies where the gain has fallen Lo
a tenth of its maximum,

¢) Let the input signal of the system be 2(t) = (). Determine the value of
the output signal () for ¢ — oo from an amplitude plot.

Exercise 10.10

Mark the cut-off frequencies in the following pole-zero diagram and draw the mag-
nitude component of the Bode plot. Give H{sg) and label the |H| axis so that
|H{w =2 x 101)] = 1.

Jw

Exercise 10.11

The gain of a system

8} decreases reciprocally
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b) increases linearly
¢} increases quadratically
d} increases with order »

with the frequency. How many ic‘éiﬂ, correspond te this frequency response?

Exercise 1G.12

vive the gain |H| of the system from Exercise 10.5 at the frequencies w = 2, =
4w = 8 and w == 2000,

Exercizse 10.13

Slw 1l}e[gra,dlents 20 g:i,ﬂlgif and 6052 ‘f{Ef i mﬂf‘;. Note: octuve signifies a dou-
ing of freguency.

Exercise 10.14

Consider a second-order low-pass filter with cut-off frequency w,. = 10% and a DC
gain of 20 4B,

8} Draw the amplitude component of the Bode plot with appropriate labelling
of axes and give the corresponding transfer fimction Hyp(s).

b} A first-order high-pass filter has been connected Lo the system, transforming
it into a band-pass Olter with the following characteristics:

— max. gain 14 dB

— gain of 0.5 at. w = 10

The high-pass filter has cut-off frequency w, and for w — o0, gain A, Give
Hyp(s) and the corresponding amplitude component, then draw the ampli-
fnde component of the desired system and determine graphically frem it the
values of A and w,.

Exercise 10.15

The foliowing is known about a systen:
s {-factor = 50,
& aximnn gain is 26 dB at wy = 10,

& If{jw] increases for w < wy by 20 4 ‘m‘ - and decreases for w — 20 by 20 32 .
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a)

b}

c)

d)

f)

Diraw the amplitude component of the Bode plot. Tabel the axes ag much
as possible,

Evaluate the transfer function H{s) with the permitted approximations for
systems with resonance.

Label the axes, using H{s) for w = 1 and w = 100).
Draw the pole-zero diagram.
At about which frequencies is the gain 3 dB below maximun?

Under what conditions do we find |H{juw)} — oc? What condition of a real
system docs this correspond to?
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11 Sampling and Periodic Signals

11.1 Introduction

The continuous signals dealt with in previous chapters oceur in natural and tech-
nical processes, where time (or position) is a contiuuous variable. To record and
process these analog signals with a digital computer we need to convert them to
digital signals. This is carried out with an analog-to-digital converter (ADC} in
two distinct steps.

¢ Sampling of a continuous-tirme signal x(t) al equidistant time points sepa-
rated by a time 7" {time guantisation).

ikl =x(kT), heZ.

e Storing the sequence of values z[ki in memory cells with a Anite number of
bits (amplitude quantisation).

The square brackets in x{k] indicate that it is a discrete signal, i.e., a sequence of
numbers. The time T between (wo sequential samples 2(&T) is called the sampling
wnterval.

We are only concerned here with the first step, the sampling, or time quanti-
sation. Amplitude quantisation is non-linear, becanse the amplitnde is rounded
to a Anite word length. For computers with a sufficiently great storage range
(e.g. 107708 1o 10%%%) and a correspondingly high number of bits (e.g. 64), the
approximation i8 in many cases ustifiable so we will forego diseussion of it.

The first tool we introduce [or describing the sampling process is the impulse
train, whose use we will demnonstrate on a known problem: representing a contlin-
uwous periodie signal with a Fourler series.

Both the techniques and the results obtained can be elegantly carried over to
deal with sampling. The line spectrum of a periodic signal is closely related to
the sample values ol a continuous signal by the duality principle of the Fourier
transform.
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11.2 Delta Impulse Train and Periodic Functions

11.2.1 Delta Impulse Train and its Fourier Transform

We understand delta impulse fram as the sum of an infinite number of shifted delta
impulses, as shown in Tigure 111, Like the delia impulse itself. it is a peneralised
function. in the sense of distribution theory, We will be wsing the symbol LLL{t),
which has the same form as the impulse train, as a short form. Because of its
similarity with one of the letters in the cyrillic alphabet, it is also called the “sha-
symbol’ . Using this symnbol, the impulse train is given by the formula

o

w(t) = L(t)= > di-p). (11.1)
T a4 U4 2 1

Figure 11.1: Delta impulse train

The Fourier transform of the delta impulse train can be obtained simply by
sranstorming the individual impuises with the displacement theoret,

Be=p) o—e o7

10
X{jw) = Z g (11.2)
A=

As each individual exponential term e~##* has period 2x, X (jw) = X{j{w+ 2]}
The form of the spectrum X {jw) from {11.2) is correct but impraetical, because of
the infinite sum. In order to derive a more helpful expression, we multiply X (jw)
with a si-function in the frequency-domain, and obtain

Yjw) = X(jw) x bl(g-) . (11.3)

The funtciion si(w/2) has zeros at w = +2m, £dx, ..., for which the distance 27
corresponds exactly to the period of X (jw). Although the product X (ju) x si{w/2)
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looks complicated. Y{yw) is a very simple function, and we will explain this by
taking a detour through the time-domain. Inverse Fourier transformation with

51(:2'—) o- e roct(t)

and convolution yields
y(#) = LL{f) wrect(f) = 1. (11.4}

18 rect(?)

b
.y
%

Figure 11.2: Convolution of a delta iinpulse irain with a rectangle hinction

The time function initially looks more complicated than its spectrum. As
rect{f} has width 1 which corresponds exactly to the interval between the impulses
in 111.(#), however, the convohution FLL{FY  rect(f) simply yields the coustant 1
(see Figure 11.2). Y (jw)} is therefore equal to a delta impuise with weight 27,

) =1 oo V(jw)=_2rw) (11.3)

We conld now determine X' (jw) from (11.3). but since si{w/2) is zero at the points
w = 2w, 4w, ..., and the value of the product is likewise gero - we do not know
what the value of X{w) would be. For these poinls, however, the periodic nature
of X(jw = X(j{w + 27)) determined with (11.2) comes into use. By comparing
(11.3) and (11.5) it can be confirmed that

X{jw) = 2md(w) for —m <w <o, (11.6)

For (11.2), periodie continuation yiclds

X{jw) = Z @ IS Z Ind(w — 2wp) = J_I_L(;—F_) . {11.7)

A=—D0 jr=—0

Here we have used the scaling property {8.19) of the delta impulse

2w — 2mpe) = & (;—ﬂ - ,u) . (11.8)
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The astonishingly simple result of this can also be expressed as follows: the
Fourer transform of o delta wnpulse tramn i the time dommn is o delta mmpulse
troen e the frequency-domazn:

ol ¢
Li{i}o—e 111 (-é——?;) . (11.9)

In order to keep the derivation as simple as possible, we defined an impulse train
with an interval of 1 {11.1). To describe sampling procedures with an arbitrary
sampling interval T we use the delta impulse train

w(t) = i 5(t - uT) = %J_LL (%) (11.10)

FIEte &

We alzo deseribe these with the sha-symbol from (11.1), where the scaling property
(8.19) is lmportant

1 t
- = 4= 11.11
St~ ) = 15 () (L)
With the similarity theorem, we can derive from (11.9) the general relation
1 i wi
= | o— — | . 11.
s (&) omei () 12

11.2.2 TFourier Transformed Periodic Signals

The connection (11.12) between delta impulse trains in the time-domain and
frequency-domain is very clegant and can greatly shorien otherwise complicated
calculalions. Its use, however, requires some practice. so before we employ it
to deal with sampling continuous functions we will try it out on some classical
problems, in particular, representing periodie signals in the time- and [requency-
domain. Periodic signals have a line spectrumn where the distance between the
lines is given by the periods in the time-domain. The weighting of individual lines
can be determined using Fourier serics. We will now use the delta impulse train
to derive thesc.

First we consider a periodic time signal =(t) with period T. H can be rep-
resented as convolution of a function xo(t} with a delta impulse train (see Fig-
ure 11.3).

T
The separation T of the impulses is sct 2o that there are no gaps between repeti-
tions of the function xg(l).

(k) = xp(t) = %_LLJ_ (}—) (11.13)
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fxo(2)
x(1) _L}' /
. - - *
o T 7 ar ! 7 1L ()
I t I L
| | |

Figure 11.3: Represeutation of a periodic signal 2(¢) as the convolution of a period wo(#)
with a della impulse train

For the Fourier trausform X (4w} of the periodic signal x(f), we obtain with
{11.12) and the convolution theorem

. . wi’ T 2 .

The Fourler transform X{jw) is therefore - as we alveady know - a line spectium
with a distance of w = %.5 between the lines. The weights correspond to the
respective values of the spectrum Xg{jw), multiplied with 2.

Figure 11.4 shows this relationship between the impulse train and the con-
tinuonus specirum Xa(jw) of one period. The height of the arrow symbolises the
weight of the impulse, 'The relationship between the periodic time signal and the

Figure 11.4: The Fourier transform of a periodic function is & line spectrum

individual lincs in the spectrum is obtained as the inverse Fourier transform of
{11.14). Using the selective property, the integral of the inverse Fourier transtorm
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becomnes a s of the individual frequency lines:

— 1 i P 1 wT Jut -
z(t) = py _m)ﬂ{j(Jw) ._L.L(Q—_T-E)e dw {11.15}
1 = ,2 2Ll .

- 3 5w oL

Fquating this expression with the general {orin of the Fourier series or a periodic
function gives

w(ty= Y A (11.17)
With (11.16), we obtain
1 2my
A, = =Xl 1~ (11.1
70 (.} T ) . 8)

for the complex Fourier coefficients A,,. The spectrum X (jw) of the periodic signal
x({t} is therelore a line spectrum where the weight of the individual lines is given
by the Fourier coeficients of 2{t}). The Fourier coelficients are also the values of
the spectrum Xo{jw) with period xy(t) at multiples w = v3F of the fundamental
frequency -}l (see Figure 11.4), '

This compact derivation shows that using the impulse train and the sha-symbol
saves cumbersome calculation. We will refer back to it when we deal with sampling,
The emphasis will Lhen lie on sampling functions of time, instead of finding sample
values from a spectrum. Firsily, however, we will deal with convolution of periodic
and aperiodic signals.

11.2.3 Convolution of a Periodic and an Aperiodic Signal

The outpui signal of an LTI-system can be obtained in the time-domain using
convolntion of the input signal with the impulse response {see Section 8.4.2}, If the
input signal is periodic, the output signal will also be periodic. We are interested
in the relationship belween the Fourier coefficients of the input and output signals,
'The corresponding convolution integral thus deseribes the convolution of a periodic
signal (the input signal) with an aperiodic signal (the frapulse response).

Example 11.1

As an example we consider a periodic input signal x(¢} with the Fourier series

w(t) = Ay (11.19)
13
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and an LT l-system with impulse response
h(t) = e "e{t) (11.20)

az shown in Figure 11,5, Comparing (11.19) and (11.17), we recognise that the
period 8T = 1.

#(t) = Z Apef®t . W)= le() | ylt) =7
¥

Figure 11.5: Convolution of a periodic inpil signal with an apenodic impulse response

The frequency response of a system is oblained from the systern function for
& = fur

H{juw) = . 11.21
Gw) = - (11.21)
The Fourier transform of the input signal is a line spectrum:
X(jo)y =Y 2m Apdlw — 27k} (11.22)
&

The cutput signal likewise has a line gpectrum, as for the product Y (jw) =
H{pw) X {jw), we obtain

; T o _ 27“4#: T
Vi) = B Xiw) = 3 (1 Hm) 5 - 27K)
! (11.23)
vy N Ag Famht
ult) = Zﬁd (1 n ijrk) “

The final inverse trausform gives the Fourter series of the output signal. Its Fourier
coefficients are the product of the Fourier coefficients of the input sigual and the

values of the system frequency response at the frequencies of the individual spectal
lines,

Convolution of any periodic signal with period T that can be represented by
its Fourier coefficients A, (11.17}, with an aperiodic signal h{f) vields

= Sarht 2 %
yl(t) = Z Crpe? ™ with ¢, = H (j——;Tk) Ag (11.24)

b= — o
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where H{jw) = F{h(t)}. If h(t) is the impulse response of an LTT-system, H{jw)
is its frequency respouse, and {11.24) specifies how the Fourier coefficients are
changed by the system,

11.2.4 Periodic Convolution

Ik seems likely that the results of the last section can be extended to convolution of
two periodic signals with the same period, but in fact, ithe product of both periodic
signals under the convolution integral is likewise periodic. The convolution integral
of two periodic signals therefore does not converge. Since, however, all of the
information about a periodic funciion is embedded in a single period, it nust be
possible to define a modified convoluiion by only integrating over ane period.

Definition 18: Periodic convolution

The periodic convolution eof two perrodic signals ©, (1) and wq(t) with the same
pericd T w gruen by

TodT
y(t) = / s xa(t — o) dr = 2 (B)Bas(t). (11.25)

L]

It 28 alse called cyclic convolution.

The exact location of the integration limits, determined by ry is unimportant as
loug as the integration is only performed over one period of length 7', Periodic
convolution correspouds to normal copvolution of a periodic signal z,(#) with a
period of zo(t), or a period of x1(f) with the periodic signal z4(#).

The result y(t) of periodic convolution is likewise periodic, We are again inter-
esled in the relationship between the coefficients of the Fourier series representation

alt) = 3 Ape!*TT (11.26)
&
ma(t) = 3 BpettmT (11.27)
¢
y(t) = > CpetHT (11.28)
*!
First of all we put (11.26) and (11.27) into (11.25) and re-order the terms
ru'!"T
y(t) = ZZ‘A-&'B‘ j e,j27r(i‘.—f}f/'i"dz.’ e_]'?.rr(’.’.;’T (11291
E ¢
Ta

The terms e 276 —0T/T i the integral have magnitude 1 for & # {, and a phage
rotating with period T/{k — £), and for k = { they are constant with the value 1.



11.3. Sampling 269

‘Therefore for the integral,

Tu+T

TR0 T/ T g { Tt (11.30)

=k
0 ££k
T
In other words; the basis [unctions of the Fourier series are orthogonal. Putting
this imo (11.29)} yields
y(t) = ¥ Ay B Tei kT (11.31)
k
By comparing (11.28) and {11.31}, we find the connection between the Fourier
coefficients of y(t), =;(2) and xa(f)

Ch = ALBiT . (11.32)

11.3 Sampling

11.3.1 Ideal Sampling

Now that we are comfor{able with the spectra of perindic signals and the delta
impulse train, we cai use it to deseribe the sampling of continuous signals. We will
first deal with ideal sainpling, where we tuke the precisc values of the continuous
function af sample points. This idealisation allows us to identify the fundamental
principles particularly simply. Later we will see that the concessions nccessary
for realisation can also be described by siinple extensions of the concept of ideal
sampling.

To model ideal sampling we start with a continuous signal #{¢) and multiply it
with an impulse train &_111{£}, as shown in Fignre 11.6. The result x(t) is again
a series of impulses. The weight of the individual impulses are the values of the
gignal al points ¢ = &7, k £ Z. In Figure 11.6, the weights are symbolised by the
lengihs of the arrows. For the spectrum X (5w} of the sampled signal ©(t) we use
the multiplication theorem {9.75) to obtain

1 t - '
2ty =x(t) - :—r_LLl_ ("f) oo X(jw) = %X(jw) * .LLL(%%) . {11.33)
Convolution of the spectrum X (jw) of the continuous signal with the iupulse train
i the frequency-domain LiL(wT/27) gives a periodic continuation of X (jw) al
multiples of 27 /T, as shown in Fig 11.7.

The Gequency w, = 2—1’5 is called the sampling frequeney. ‘The specirum of the
sampled signal in the frequency-domain is clearly periodic with period wy, and
there is a duality here with the Fourier transform of periodic signals, illustrated
by the following scheme.
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periodic signal  o-—» line spectrum

sampled signal o—e  periodic spectim

L1 (&)

x(t) x(1)
(1)

I ~— !

Figure 11.6: Ideal sampling of the signal #{¢)

b X(jw)
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Figure 11.7: Specirum of the sampled function #(t)

11.3.2 Sampling Theorem

Analog signals are sarnpled so thal they can be recorded or processed using digital
technology. i is also usually desirable with most applications to reconstruct the
analog signal from its sanple values, for example, with Compact Discs. The mmusic
signals are sampled bhecanse there are many technical advantages of storing a
digital signal as opposed to an analog signal, but the user of the CD-player is only
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interested in the analog music signal, and not the sample values. It is thercfore
worth knowing whether a continuous signal #(¢) actually can be reconstructed
from the sampled signal z(#). This is exactly what the sampling theorem deals
with, which we will be covering in this section.

To begin we introduce the concept of a band-limited signal.

Definition 19: Band-limited signal

A signal #(t) 4s band-limited of its spectrum X (jw) s zero

o« _ | any value |w| <uw,
X('}u)) - { 0 ‘w“ Z Wy,

above a frequency wg. The frequency wy is called the band limit.

Figure 11.8 shows the spectrum of a band-limited signal, which in this case ar-
bitrarily has a triangular form for |w| < w,. To distinguish between the periodic
repetitions by sampling, this is also called the baseband spectrum.

-wg | wg ®
Figure 11.8: Baseband spectrum with limit frequeny w,

We can use it to formulate the central principle of the sampling theorem.

If a band-limited signal #(¢) is sampled frequently enough, so
that the baseband repetitions do not overlap, #(t) can be inter-
polated from the sampled signal 2(t) without error.

The justification for the sampling theorem will be explained by considering it in
the {requency-domain. Figure 11.9 shows the spectrum of a sampled signal with
the repeated baseband from Figure 11.8 at multiples of the sampling frequency
Wy = %—Zﬁ Reconstruction of the original signal requires an interpolation flter
H{jw), that leaves the baseband unchanged. but suppresses all of the repetitions
caused by sampling. Such a filter can always be found if the sampling frequency
Wy, = 5[1 Is greater than or equal to double the bandlimit w, of the band-limited
signal Z(t).
wa:ﬁ‘szgorTgl.
T ' Wy
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Figure 11.%: Yor wy < &, the signal X(jw) can be reconstrycted using the interpolation
filter & (7w)

t X(jew) interpolation
filter |

T

If this condition is violated, then the repeated baseband overlaps itself, and
can no longer be separated by convolution (see Figure 11.10). The overlapping
that occurs in the dashed region is also called alinsing as an obvicusly erroneous
reconstruction by the interpolation filter leads to high-frequency signal compo-
nents appearing at other locations in the incorrectly reconstructed baseband, The

X{jw)

| |
i 1
L | }
-ng ! o, _2_;; _‘lﬂ__F., o

Figure 11.10: Overlapping baseband for wy > &
sampling frequency w, = 2—;’
1 wa
T 2n
is also called the sampling rete. It specifies how often the signal will be sampled
per unit time. Sometimes f, is called the sample frequency. To clearly distinguish

between f, and w,, the terms ‘sampling rate’ and ‘angular sampling frequency’
should be used.

fo= (11.34)

Different, choices of Lhe sampling rate cause different cases to oceur, shown
in Table 11.1. Clearly, critical sampling represents the border case where the
sampling rate is as low as possible, but aliasing has still been avoided. In this case
the ideal interpolation filter is a rectangle in the frequency-domain with frequency
response H{jw) and impulse response h(t) (see Figure 11.11):

H{jw) = Tre(:t.(t;-}—) e—o h{t) = di (ﬁ?) . (11.35)
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Fabte 11.3: Describing dilterent sample rates

fa> ? oversampling
Wy ] .
fo= - critical sampling
Nyquist-frequency
Ja < il undersainpling
T = aliasing
overlapping spectra
h(p)
/T
J.l’ %
/o]
[N
fon
e o - \ ,!f \\ .‘/ \."\ ’_ . .
T /2T 3T t

Figure 11.11: Iinpulse response of an ideal interpolation filter

In the frequency-domain it is clear that the spectrum X {jw) of the ariginal sig-
nal &{t) can be recovered by multiplication of X (gw) with H(jw) (11.35). S(alilw
by T"is necessary becanse the individual impulses of the impulse train ;- 111 (%%
in (11.33) have a weight of .

|
i 7L
I
1{ m| iy = si(Z) —
|

x(¢) x(1) ¥1)

Figure 11.12: SBampling and interpolation with an ideal interpolation filter

In the time-donain we can obtain with some rearrangment, the reconstrueted
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signal §{(t) (Figure 11.12)

gt = [J(f)%J_L(%)}*ns;(q;) (11.36)

= [ Z i’:(k?‘}d(t—kl‘)} w(f,;) (11.87)
hm—oo

= Y :E(kT)ﬁi(?rt—_—E). (11.38)
Jr— 1

Perfect reconstruction §(t) = #(£) from the sample values suceeeds through inter-
polation if the sample values are used as scaling factors of appropriately shifted
si-funietions (sce Figure 11.13). Of course, it must be possible to represent £{4)
biv shifted and scaled si-functions. From (11.33), with (11.35) — (11.38} we can
see that this requirement is equivalent to band-limiting with w, < 7. For values
t = kT all si-functions but one are zero. This one si-function has its maxdmum
value of 1 at ikis point. The sample values #(AT) arc therefore the weights of
the si-functions, and between the samnple values, all {infinitely many) of the si-
functions are superimposed, such that the nearest sample values have a greater
influence on the signal value than those far away.

o Jn=a0)= > HAT) s (W ¢ #TkT)

I

i
/
I
od Y .-'i,.- —n
. i S
. iy PR
= \NZANAS
rNL et

Figure 11.13: A band-limited signal &{t) can be put Logether from a series of shifted
weighted si-fenctions

The basic ides of the sampling theorem comes from Lagrange {1736-1813),
and interpolation with the si-function was described by Whittaker in 1915. The
saropling theorem in its cwrrent form, however, was introduced by Shannon in
1948,
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11.3.3 Sampling Theorem for Complex Band-Pass Signals

If we cousider periodic continuation of the spectrum by sampling, for example,
Figure 11.9, we see thal the baseband spectrum between —w, and w,, and the
periadic continuation stand next o each other at multiples of the samnple frequency.
The spectrum of the original signal £(t) could lie just as well between —w, + %1 and
+wg + —%ﬁ, or even between 0 and ‘%” - the periodic continued spectrum X (jw)
would be fundamentally indistinguishable. Correct choice of the interpolation
filter for reconstruction of Z{f) requires knowledge of which region of the [reguency
axis the signal occupied before sampling. Thiy leads to the sampling theovern for
complex band-pass signals. )

We start with a signal #{f), with spectrum X (jw) (Figure 11.14). As it has no
frequency compouents lower than {fiw] < wy) or higher than (jw| 2 w + Aw), it iy
known as a band-puass spectrum. The corresponding time signal must be complex
as the couditions for conjugate symmetry (9.49) are not [ulfilled:

X(jw) # X (—ju) — E(t) complex. (11.39)
Coniplex band-pass signals are of special importance in communications; they
are represented by two real signals: one for the real part, and one for the imaginary

part.

| (G (g+A

X(jw)

Figure 11.14: Unilatera} band-pass spectrum

If we sample this signal with sampling rate

Jo= Il' = %?w where. w, = Aw

we again obtain a periodic continuation of the spectrum where overlapping is
only just avoided; s case of critical sampling, Figure 11.15 shows the spectrum
of the sampled signal and the impulse train, that corresponds to the sampling
frequency wy, = Aw. There is no condition for the relationship between wy and Aw,
Both frequencies can be chosen independently. Critical samnpling is clearly always
possible for complex band-pass signals, We will soon see that for an apparently
simaple case of a real band-pass signal that it is nos,

To recover the original signal, the interpolation filker should be chosen so that
it. blocks all frequency cormponents not in the spectrum X (jw) of the original signal
#(t). Its (requency response is a reciangie in the band-pass location:
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X(jw) interpolation
filter H(jw)
!\[\ | . w
w
[ O
| I I S | i N
—2Am  -Aw Ay 2A0 3Awm

Figure 11.15: Spectrum of the sampled complex signal

Hjw) = T rect ((u iy — %ﬁ) %T_) ) (11.40)

There is no conjugate syminetry here either, so the corresponding impulse response
is complex:

h{t) =si(7fr_;)ej(wa+%“. (11.41)
Tigure 11.16 shows the real and imaginary parts of h(f) for wy = 48w,

11.3.4 Sampling Theorem for Real Band-Pass Signals

For the apparently simple case of a real band-pass signal, correct choice of sample
frequency is not as simple as for the complex band-pass signal. The spectrum
of & real band-pass signal is shown in Figure 11.17. The conditions of conjugate
symmetry are fulfilled in this case.

Critical sampling requires a sample rate of

fo= L. Aw e, w, = 24w
T T

In contrast to complex band-pass signals, in this case, critical sampling is only
pogsible if wy and Aw have a particular relationship with each other. Clontimtation
of the band-pass spectrun withoul gaps requires that the space between —wy and
«p in Figure 11.17 can take exactly an even number of hall-bands of width A
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4 Re{h(1)]

Figure 11.16: Complex hnpulse response of the interpolation filter

ﬁ(jm}

AN

—~i0pg—A —wg (GO T it m

Figure 11.17: Band-pass spectrum of a zeal signal

The even number condition comes about becanse of the conjugate symmetry with
w = 3, and therefore
weg=1Aw.ncN. (11.42)

Otherwise the space in Figure 11.17 canuot be completely filled with hali-bands
and critical sampling is impossible. Figure 11.18 shows the spectrum of the criti-
cally sampled signal and the corresponding delta impulse train for n = 2.

The ideal interpolation filter must take exactly the frequency components that
wore contained in the original band-pass signal. We can describe it with a rectan-
guiar frequency response in the baseband, that is shifted by convolution with two
symetrical delta impuises to the band-pass locaiions:

H{juw) :Trect(%?:) * l{S(w—wow%—w) +é(w+wu+%—¢i)} . (11.43)

The corresponding, impulse response is purcly real and rvesembles the impulse
response of the interpolation filier {11.35), but because of the band-pass character,
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interpolation
filter H(jm)

W55

] (2Am) ] 1
: ; y m
-2Aw 2A0 4Awm
Figure 11.18: Spectrun of the sampled real signal
it is multiplied by another cosine function:
h{t) =i (%) cos ((wg + %Lf—) t) {11.44)

Figure 11.19 depicts the impulse response for wo = 3-Aw, (n = 3). It can clearly
be seen that the envelopes in Figure 11.19 agree with the curve in Figure 11.11
when Lhe time axis is scaled by a factor of 2. (11.44) is also valid for the case
wy = 0, in the low-pass case (11.35) (Excreise 11.22).

Figure 11.1¢: Impuise response of an interpolation fiter for a critically sampled real

band-pass sigual with wy = 3Aw

The sampling frequencics determined for the three cases of eritical sampling are



11.3. Sampling 279

shown in Table 11.2: Comparisot with Figures 11.8, 11.14 and 11.17 reveals the

Table 11.2: Sampling frequencies for eritical sampling

baseband signal We = 2wy
comnplex band-pass signal | w, = Aw

real band-pass signal Wo = 24w

following simple rule for choosing the sampling frequency: for critical sampling,
the required sample frequency w, is equal to the complete width of the frequency
bands in which X (jw) is non-gero, This aldo requires that the speetra are chosen
50 that critical sampling is possible.

11.3.5 Non-ideal Sampling

Until now we have not considered physical implementation of the sampling proce-
dure. We have assumed that it is possbible to take the values (kT of the signal
F(t} at precisely defined points t = kT, as depicled in Figure 11.20. In fact, the
sampling procedure requires that energy is taken from the signal #(4) for each sam-
ple value. For example, an electrical signal can be sampled by taking some charge
at each sample point and storing it in a capacitor. The resulting capacitor voltage
s a measurement of the sample value. Charging a capacitor requires, however,
a certain timespan, so the capacitor vollage cannot he assigned a definite signal
value of Z(#) at a clearly defined point in time (see Figure 11.20 below).

We can also describe such non-ideal sampling with an impulse train, if we
formulate the collected charge over a time ¢ as integration:

/2
1 . . 1 t
- / Fvdy = () * —?;rect (-;) . (11.45)
t—T/2

The integration time r must be smaller than the sampling intcrval (¢ < T). The
series of rectangles that describe the sampling procedure is shown in the middle
of Figure 11.20. They are each ceniralised at the desired time point, although
strictly speaking, the integrated value is only available at the end of the integration
interval. In this manner we avoid having a delay term in the caleulation. The
sampled signal x(2) is thus

z{t) = [;"f:(t) * lrrect (%)

1 : ‘
-TJ_I_L(§) : (11.46)
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Figure 11.20: Sampling a signal in the real-world
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h)

A diagrammatic description of this sampling procedure is shown in Fig-
ure 11.21. Compared to the ideal sampling in Figure 11.6, there is an additional
systern with impulse response h(t) = l?_rect(-;':)

1 {
W z rect(?) I

x(1}

Figure 11.21: Non-idcal sampling of the signals £(t)

The description of non-ideal sampling introduced herc with the example of an
clectrical signal also applies (o other signals. In every ease, measurement of a
gignal value reyuires a certain time. A further generalisation is the assumption
that the encrgy transfer is not uniform within the time 7. We can take this lnto
accounl using any weighting function a(t) with

. T r
a(f) > 0 Jor— 5’ < < -:'2' (1147)

alt) = 0 otherwise.

instead of the rectangle function. Before the integration, £(v) in (11.45) is mmlti-
plied by a{t— ). In connection with optics, ¢(t) is also calicd an aperfure function.



11.3. Sanpling 281

For the sampled signal,

() = {?(f} *a{t)} . %UJ(%) . (11.48)

We found the fundamental property with ideal sampling, that the spectrum
of the sampled signal consisty of the continuation of the specirum of the non-
sampled signal. We will now investigate what influence non-ideal sanipling has on
the frequency-domain. To simplify this, we will be limnited to rectangular apertures
in accordance with {11.46). The Fourier transform of {11.46) vields the specltrum
of the sampled signal X {yw)

X{jw} = ;}}; [«’?Uw)‘si(%—r)] *ﬂi(%g) ) {11.49)

Compared with the spectrum of the ideal sampled signal {11.33}), it is striking that
the spectrum of the original signal X (jw) is weighted with the aperture hefore
periodic continuation. Figure 11.22 shows a possible spectrum of the original
signal X (jw) {as in Figure 11.8} and the weighting with the Fourier transform
of the rectangle impulse. As with the rectangle, the greatest value with ¢ = T
has been taken, which corresponds to an integration with duration z over the
entire sampling interval T. The first zero of the si-function then lies exactly at the
sampling frequency w = 2w/T.

f(jm) on ‘
bl( 2?) mit t=1

/2!(. 2’;\\ w

T T
Figure 11.22: Spectrun of the sampled signal
In order to cstimate the effect of sampling on the (requency response, we cal-

culate the value of the si-function at the highest frequency that X (yw) can contain
withott eausing aliaging errors:

. I 2
si(ﬁf) >22_39dBlorc<T. (11.50)
2 T :
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The highest fregquency component is damped by nearlty 4 dB; for all lower fre-
quencies the damping is lower. An integration time r, that is shorter than the
sampling interval likewise reduces the damping effect. In many applications this
effect can be tolerated and where appropriate can be balanced out by a suitable
posi-connected aperture correction filter. For example, most TV camerag have
an aperture correction filter that compensates for the filtering effect of the row
sampling of the image. In fact, components at frequencies above half the sam-
ple frequency are strongly damped by interpolation, but they are not suppressed
enough that the resultant aliasing is tolerable. I such frequency components oc-
cur they still should be suppressed by a special anti-aliasing pre-filter, that blocks
frequencies above half the sample frequency.

11.3.6 Reconstruction

It is not only necessary to consider side-effects from the implementation when sam-
pling, but also during reconstruction of the continuous signals from their sample
values. Although the description of reconstruction using an impulse train (11.36 to
11.38) is theoretically very elegant, impulse traing and approximations nsing short
high voltage peaks are not practical for use in electrical circuits. Real digital-analog
converters thervefore do not use these signals, and use instead sample-and-hold cir-
cuits and staircase functions whose step height is the weight of the corresponding
delta impulse and so corresponds to the actual sample value.

We still keep the advansages of the delta impulse train, however. The staircase
functions can be thought of as a delta impulse train interpolated with a rectangle
of width T

() =xft) %rect (% - -;—) . {(11.51)

Figure 1i.23 shows an impulse train and the corresponding rectangle function.
The rectangle impulse does not lie symmetrical to the sample points, instead

xX'(t}
i
1\ !
Iy i
*— 1 1
T 2T | t

Figure 11.23: Signal interpolated with a sample-and-hold circuit

shifted from the symmetrical position by T/2, so because of the shift theorem, a
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corresponding cxponential terim appears in the spectrum.

X'(jw) = X (jw) - si (“—"—;:) eI (11.52)
Figure 11.24 shows the magnitude of the resulting spectrum X'(jw). While
in Figure 11.22 the bascband spectrum was weighted with a si-function and then
periodically continued, here the periodic spectrum X{jw) is already provided and
is then weighted by multiplying it with the si-function. This damps the reoceur-
rences of the baseband (shaded in Figure 11.24), but unfortunately does uot fully
suppress them. The shaded area could, for example, he andible high-frequency
noise in an audio signal, or appear in an image as visibly ‘blocky’ pixels. However,
unfike aliasing errors which cannot he separated from the desired signal, these
noise components can be fully eliminated by post-connecting a low-pass filter with
impulse tesponse A{#) (11.35). The residual reduction in high-frequency compo-
nents in the basehand can likewise by compensated for using a ilter which can be
imnplemented either digitally before the DAC or after as an analog filter.

4 X(jw) i ( g)l")

AN

/2:!: ;'231\\ (&3]
|x'Geo)

@%\M

T T

Figure 11.24: Magnitude respanse |X’{7w)| of the signal interpolated with sample-and-
hold cireuit

Example 11.2

The problems described with reconstruction also oceur in film projections.
Recording and replaying a series of individual images can be considered as sampling
of a scene continuously changing in the time-domain. Per second, 24 individual
images are taken, so the sampling frequency is

1
w = = = 24H=.
i T
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Interpolation when the film is played back is very easy to implemoent when each
image is projected for the corresponding length of time, although in fact, (hey are
ot there lor the entire interval T == 1/248, as between two images, the film has to
be moved. There is no practical interpolation filter available for this optical signal,
as in Figure 11.9, so the re-occurrences of the spectrum at 24 He, 18 Hz, 72 Hy,...
are not removed and are perceived by the eyes as flicker. The eyes are sensitive to
fiicker up to around G0 Hgz, bul the first re-occurrence st 24Hz creates more visaal
disturbance. To avoid this problem, a trick can be used: instead of inkerrupting
the projection of an image once for the film transport, it is interrupted twice {see
Figure 11.25). The interrupting is done willts a mechanical blind which is easily
to implement. It doubles the sample rate (to 48 Hz), and pairs of consegnential
sample values are equal because they come from the same original.

A1)

G

- T _
To f

movement of fiim

Figure 11.25: Empulse response of the interpotalion flier

The effectivencss of the double projection procedure can be explained theoret-
ieally. We represent the doubie projection of an image as the impulse response of
an interpolation Blter {see Figure 11.25) and find the spectrum:

hity = rec:t(%—r—) * I:ﬁ (f——-T:;-}-) —!*5(1—-%-—%2)] (11.53)
- () o= (1=5) () Jorso

. " T
H(jw) = Tp Hl(%ﬂ) e (F+T) . 2 cog (wz) (11.55)

(Hwl = 2Tu-‘n‘i(%g) ttos( %) (11.56)
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Figure 11.26 shows the periodic specirum corvespending to 24 images per sec-
ond and the weighting by the interpolation function h(t). An image signal has a
dominant frequency component at w = 0, The zero of the spectrum at the sam-
pling frequency 24 Hz extensively suppresses the first reoccurrence. The second
at 48 Ha is not weakened significantly, hut the flickering becomes much less no-
ticeable. Additionally, the flicker reduction only functions when both rectangles
vhat form A(t) (Figure 11.23) are shifted away from each other by exactly T/2.
Reduction of the components at both 24 Hz and 48 Hz can then be achieved using
triple projection (Exoercise 11.24).

| X{jo) Zero at 24 Hz suppresses

annoying flicker

——_[HGw)

™

Figure 11.26: Magnitude respouse of the inferpolation fiker with a zero at 24 Hz

24Hz 4Ein i)
n

11.3.7 Sampling in the Frequency-Domain

The sampling theorem states that hand-limited signals can be reconstructed from
their sample vaiues if the sampiing frequency is high enough that no overlapping
oceurs in the frequency-domain. Because of the duality between the time-dotmain
and frequency-domain, a dual of the sampling theorem can be formulated:

Signals of finite duration can be unambiguously reconstructed
from a sufficient number of samples from their spectrum. Sig-
nals repeated in the time-domain may not overlap.

We can express this mathemasically with the transform pair

Yijw) = Y(w)- %m(%) (11.57)

y(t) = y(t)*él?ﬁ(%) (11.58)
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Sampling in the frequency-domain is again idealized in (11.57) as multiplication
with a delta impulse trajn. This corresponds to convolution {11.58), that causes
periodic continuation of g(t) in the time-domain. If the signal §{(t) is limited
in time and its duration is less than 77, sampling io the frequency-domain does
not lead to overlapping in the time-domain. "Then §(t) can be recovered from
y(#) by multiplication with a time window of length T. In the frequency-domain,
this corresponds to an interpolation (convolution) with the spectrum si(wT/2),
that transforms the line spectrum inte the smooth spectrum belonging to ¢(t). If
overlapping occurs in the time-domain, an error-free reconstruction is impossible.
In this context we use the term fime-doman alicsing.

Sampling in the frequency-domain is always carried out if values of a spectrum
are to be stored in the memory of a computer, where continuous functions cannot
exist, only a series of numbers. The necessary restriction to time-limited functions
is, for example, achieved by splitting the signal into sections with finite duration.
The relationship between a series of finite length and their spectra is represented
by the discrete Fourier transform (DET).

11.4 Exercises

Exercise 11,1

Write the sketched signal with a sum of delta impulses as well as with the LLL
symbol.

x(0)

Exercise 11.2
Determine the Fourier transform X{jw) of x(¢) = 1li(at) and sketch z{t) and
X(jw) for a = 2, a =1 and a = 3. Note: use transform pair {11.12)

Exercise 11.3
Consider a delta impulse train shifted by io:

x(1)

SR N R O T R

0 & 1+ 244, 14
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a) Give x{t) and X (jw) witk 11l symbals,

b) What symmetry does z{¢) have for tg = 0, fo = § and to = £7 Use your
answers to derive the symumetry of X {jw). Note: see symumetries (9.61).

¢) Sketch X (jw) for ty = % and fy = % Write X (jw) a8 a sutn of delta impulses.

Exercise 11.4

Give X (jw) and Xo(jw) as well as ¢ (t) oo X (jw) and 29(t) o~ e Xo(jw) using
the LLL- symbol and sketeh both functions of time.

X (jan) Xotjw)
) ) 4
LN (1) XN v J) I ase
__[ t f I? 1 Al ]y |
. g % w -3 0t23 ¥ O w

Note: represent X, (fw) as & sum of two spectra. For the sketch, represent the
resull as a sum of delta-impulses.

Exercise 11.5

Calculate the Fourier series of the following periodic functions using a suitable
analysis.
Note: evaluating the coefficient formulx is not necessary.
a) @, (l) = cos{3wpt} x sin®(2wyt)
b) zy(t) = cos®{(2wyt) x sinfwyt)
¢) 2. (t) = sin* (Bwgt) ¥ cos? (wyt)
Exercise 11.6

Consider the funclions
m(t) = cos(Bwyt) + cos{wpt)

zof{t) = sin{wyt) x cos(\/Q_wgt)
z3(f) = wa(t) + cos{wot) x sin{v2uyt)
5
ralt) = Z sin{y/vwot)
v=1
(] = sin (gt) + cos (gc)

&) Test which are periodic, and give the periods where possible,

b} Give the Fourier transforms X1 (jw) ... and Xy(jw).
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Exercise 11.7

Expand the following periodic signals using the coefficient formula in a complex
Fourier series x(1) = 3" A, e’ Give the fundamental angular frequency wy for
#

each.
a) x,(8) = sin? wyt

b)

x(1)
* 8 & ] L N )
[ ] i | [ ] L
0 (I T 2T !
@
¢) 50,
AN .
-1 ; 1 2 f
T
. . 1 et 2n
Note: eveflicient formula A, = [ z(#)e ™' dt, T =—
T 1153
0

Exercise 11.8
Show that X (jw) = 3 e 2 = 11| (%), see (11.7), by expanding the right-
" '
hand term into a Fourier series.
Exercise 11.9
Consider 2{t} = si*{#t} and the periodic signal z(t) = F(t) » ; Lii {£).
a) Calculate and sketch X(jw) and then X(jw). How do the weights of the
delta impulses of X (juw) tie in with X (jw)?
b} Give the Fourier series expansion of x{t) with (11.18} and sketch the series

of the Fourier cocfficients A4,,.

Exercise 11.10

Give the Fourier transform of z(#) = rect (%) and the periodic continuation z,(t} =

z(t) « LLL (§). Calculate X (jw)
a) using convolution in the time-domain.

b) wwing the convolution theorem.
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Exercise 11.11

(11.22} allows the spectrum of a sighal x(#} with period 7' = 1 to be expressed hy
its Fouricr coefficients 4,,. Derive the relationship for general periods T'. There
are two possible routes to the solution: a) starting with {(11.14) and (11.18), and
b} using the Fourier transform on (11.17).

Exercise 11.12

Find the Fourier transform of the signal from Exercise 11.7, using the results from
Exercise 11.7 and 11.11.

Exercize 11,13

A syslein with impulse response h{t) = sin(¢) e™1%<(t) is excited by a periodic
rectangle signal 2(#). Find the output signal y{t) as a Fourier series. See Sec-
Lion 11.2.3.

x(1)

e T O

T T i

Exerecise 11.14

Calculate the cyclic convolution of the signals f(t) and g(t) = siu(wyt) using
Fourier series, First give the econnection between wy and T, so that the cyclic
convohition is defined property.

Ao

LI R ] -v e

2T 2T f

Exercise 11.15

Jongider the spectrum X (e} of the signal x(£).

‘ X(jeo)
L

i
. ‘ —

"‘(Ug C()g 1Y

Find X (jw)e--oa(t) x FLLL (—%) and sketeh it for Ty = 5—:; Tp= 2 Ty=2L
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a . .. s
and Ty = qf; For which cages does aliasing occur? What cases are critically
sampled?

Exercise 11.16

A signal 2(t) = gt

EE -5—) is sampled at equidistant points in time v 7T, v € Z
to form a signal z4(¢) of weighted delta impulses,

a} Give the original spectrum X {jw) = F{x(f)} (sketch with labelled axes).

b} Sketch the spectrum X 4 (jw) e--o0 z4(t) for the case T' = 2m

3wy
Exercise 11.17
The sketched rectangular signal #(3) will be investigated.
K1

a

=
v =
L

a) What is the spectrum R{jw) = F{r{t)} of the signal for hoth magnitude
and phase? Sketch |R(jw}|.

b} The spectrum R{jw) is sampled at equidistant points spaced by wy. This
creates th?, rew spectrum:

B, (jw) = wa Z R{jrwg) - d{w — vwg).

WX

Sketch the magnitude of this new spectrum for |w| < % with

ay g = 4%’5,

where the weighted delta impulses arc represented by arrows of corresponding
tength,

¢) Sketch the functions of time 7y (¢), corresponding to the cases o), 8), ¥} in
part b).
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Exercise 11.18

The spectrum X (jw) is from & unilateral band-pass signal x(t).

X(jm)

_ : @
wy=-ary g+

a) Is @{t) real-valued? What symmetry does x(t) have?

b} The signal x,(¢) is created by critical sampling of x(t}. Give the sampling
frequency f. and the sample interval T, for this case. Sketch X, (jw) for
wo = 91 and for w, = 2.

¢) Sketch X,{jw) for sampling with f, = q’—“:f— wp and w, as above.

Exercise 11.19

The signal 2{t) with the sketched spectrum X (jw) is modulated with the shown
arrangement,.

X(jer) complex modulation

vl | o= 103

/_ _\ x(1) —é - y(1)

1t

a) Sketch the spectrum Y (jw) of the output signal.

b} Draw an arrangement of sampler and reconsiruction filter H(jw) that can
demodulate y(t). so that z{(f) is obtained at the output. What are the
possible sampling frequencies? Sketch |H{jw)| for a suitable reconstruction
filter.

Exercise 11.2(

A slgnal with the sketched spectrum is sampled ideally with intexvals 7.

b X(jeo)

A LN

=Sy, 4y, 4o, Sw,
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a) Is the signal a high-pass, a low-pass, or a band-pass signal? [s it complex or
real?

b) s eritical sampling possible?

¢) Draw the spectrum X, (jw) of the sampled signal for T, = ;’—‘5 Ty = 3% and
=021,

Exercise 11.21

Can the band-pass signals with the following spectra be critically sampled? TFor
each signal, give the minimum sarple frequency at which no aliasing oceurs.

@D I X{ja) O?) X(jary
19 09 09 19 o 45 -3 3045 My
—~
© X(jw) @ X(jow)
-2 -1 1 2 “a 33 223 23 33 “
(e) X(joo) (D X(jio)
/v\: M ) et } } /V\ 1o
0 1 2 “o 05 1.5 2.5 iy

Exercise 11,22
Show that the impulse response of the ideal interpolation filter for critically sam-
pled reul band-pass signals (11.44) hecomes the low-pass case (11.35) for wg = 0.
Exercise 11.23

A signal z(#), band-limited to f, = 20 kHz is critically sampled at frequency f.
The non-ideal properties of the sampling are represented by the aperture function
{

1+ =

T

_ "
a(t) 1-2 for O<t<t

for —r<t<(

t .
| otherwise.

¥ arta a) and b), let == .
Yor parts a) and b, let 57
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a) Draw A(yw)e—oa(t) and a suitable example for X {(jw) in the same sketch.

b} Compare the amplification of the aperture function at the frequency zero
and at the band limits of the signal. By how many dB is it less at the band
limits?

¢} Determine 7 50 that the aperture function makes a suitable preliminary anti-
aliasing filter if sampling is carried out at f; = 10 kHz,

Exercise 11.24

The effect of triple projection on the flickering of cinematic filns (see Example 11.2)
will be investigated. The interpolation filter takes the form of a mechanical shutter
with the sketched impulse respense ift).

h{t) \
1
——} [ | \ movement of film
% + + + ~v———vr
F TD TO T=6T0

Express h(t) using recl-lunctions and d-impulses, as described in (11.533). Then
calenlake H{jw) and sketch |H{ju} for T = ﬁ{; In particular, try to identify
the zeros of H{jw).
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12 The Spectrum of Discrete
Signals

In Chapters 1 to 10 we got to know some powerful tools for dealing with continuous
signals and systems. We carried out the canversion of real-world continuous signals
to sampled signals in Chapter 11, which is necessary for digital processing. The
sampled signals were treated as continuong-time variables so that the tools we had
learnt, like the Fourier transform, could still be used.

In 2 computer, we can only work with a sequence of mmnbers, that are defined
over a discrete range by a numerical value (the index). Examples of such an index
might be the sample number for a digital audio signal, or the pixel address within
a digital image. In addition there are diserete signals that have not arisen from
sampling a continuous signal. Examples of these are represented in Figures 1.3
and 1.4. We need new tools to describe such sequences, and we will concentrate on
them in Chapters 12 - 14. This chapter deals with discrete signals and the discrete
form of the Fourier transform, the F, transform. This transform is also referred
to as discrete-tune Fourer transform (DTFT). The two following chapters deal
with discrete systems and we will learn the discrete counterpart to the Laplace
transform, the z-transform.

in Sections 12.1 and 12.2 we will consider discrete signals together with some
examples. The discrete-time Fourier transform will also be introduced, which we
will use to examine discrete signals in the frequency-domain. We will see that it
has similar properties to the Fourier transtormn for continuous signals. At the end
of this chapter we will investigate the relationship between continucus signals and
their discrete cquivalent as a series of samples.

12.1 Discrete-Time Signals

A discrete-time signal is represented by a sequence of numbers that is called a tme
series. There iy no smooth transition between the numbers. Figure 12.1 shows
the conventions we will use to represent such signals; in order to distinguish them
from continuous-time signals, we put the independent variable in square brackets.
ln many technical appiications, a discrete-time signal avises from the sampling
of a continuous-time signal #({), where a sample is taken from Z(f} at regular
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intervals T and is translated as a numerical value x[k]:
k] = &(kT), ke Z (12.1)

Here it is essential to distinguish the discrete signal z{k] from the sampled signal

alt) = &(t) - ;I-J-u(%) = Y #T)S(t — kT)
k 12.2)
=Y «lkot—kT), teR (
k

introduced in Chapter 11. The dependent variable 1 is defined for every point in R,
although 7, (2) is zero for almost all of these time-points {(except for t = T, k & Z).
In contrast, z|k] is only defined where the index k is an integer, so integralion of
xlk] is not possible, and the Fourier transform from Chapter 9 cannot be used.
In the following sections we will deal with discrete siguals in depth without, being
limited to sequences of sampled values, instead we will consider general time-
series x{ki. We will return to using sampling in Section 12.4, The values z{k]

x[k]

IT1”?
bl

Figure 12.1; Representation of a discrete-time signal x[£]

!

are themselves continuous and in general, they could also be complex: z{k] € €.
Strietly speaking, this is not the case if the series is going to be processed with
a computer. The finite word length means that numbers can only be recorded
within the limits ol the number representation being used, and the values z[k]
then become themselves discrete. To distinguish them from the discrete signals
with contimuons values, we reler to these signals as digeol signals.

Rounding to discrete values is a non-linear process and is called quanfisation.
Processes involving digital signals therefore cannot be described by LTEsystems.
A computer with sufficiently great word length can work with digital signals that
are so finely quautised, however, that they can approximate discrete signals with
continuous values, We will therefore restrict ourselves to discrete signals from now
[A10
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12.2 Some Simple Sequences
Iz this section we will be dealing with some simple discrete signals; we already

know their continuous-timne counterparts. These signals are the impulse, step aud
exponential series.

12.2.1 Discrete Unit Impulse

The discrete unit impulse is defined by

1 k=0 o
81kl { 0 Eez\o) | (12.3)

Figure 12.2 shows ihis sevies. The discrele uait hnpulse has Lhe selective property

(S

z[k] = Z z[r]8lk — wl, | {(12.4)

W

that can be easily checked.

O]

Figure 12.2: Discrete unit impulse

somiparing Lhis with the selective property of the continuous-time delta impulse
shows a close relationship between bhe two:

2lt) = /0c A (1t - 1) de. (12.5)

Integration with respect to the continuous wvariable r in (12.5) correspouds to
summation with respect to the discrete independent variable x in (12.4). We
will see that replacing integration in the definition of a continuous signal with
summation often leads to the equivalent discrete signal.

There is a more significant difference between the discrete unit impulse and the
contimous delta impulse: the unit impulse 42k is not a distribution. For & =0 it
has the finite value §{0} = 1, which makes calculations. simple. In contrast to the
contineous delta npulse (), the unit impulse 8]4] can be directly inserted into
a fornmla and does not require the use of the selective property.
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12.2.2 Discrete Step Function

The discrete unit step function from Figure 12.3 is defined by

o J 1, k=0 .
EL&]—{U} PP (12.6)

The relationship between the unit step function and the unit impulse corresponds
to the equivalent for continuous signals:

elk] = Z 5[] (12.7)

K==

BIk} = ek — efk — 1] (12.8)

Integration in the continucus case corresponds Lo discrete snmmation and differ-
entiation of continuous signals corresponds to subtracting the neighbouring value
in the discrete case.

e[k}

USSR ARRARE

k

Figure 12.3: Discrete unit step function

12.2.3 Exponential Sequences

Exponential sequences are in general complex sequences of the (orm

k] = X el B+ (12.9)

X is the complex amplitude, ¥ is the damping constaut, and Q is the angular
frequency. Discrete exponential sequences are often characterised directly by giv-
ing their base, especiaily if they will be interpreted as the impulse response of a
discrete gystem.
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Jx1[k]
14 1
211 g
T ST
. ° T * o - -
k
hxg[k]
1e
r 1
4 16
- » T r L J - '
L, 1 k
g | T8
2

Tigure 12.4: Examples of exponential sequences

Example 12.1

Two examples for unilateral exponential sequnces with real values are given by
(12.10) and {12.11)}, and illustrated in Figure 12.4.

21k = (%) e[¥] (12.10)

#alk] = ( %) ikl (12.11)

For hoth exponential series X = 1 and ¥ = —In2. The angular frequency 2 has
the values £t = 0 and } = w respectively. Both series are the same except the
signs before the odd values.

In contrast to coniinuous exponential functions, different values of the angular
frequency §2 can lead to the same exponential series. As e is only evaluated for
intcgers &, adding muitiples of 27 to Q does not change the sequence:

eI _ pilf2 2wk (12.12)



300 12. The Spectrum of Discrete Signals

Re{x[k]}
‘ "
jm {£Ik]} Q=025 E=-).1

e S]]
\i/f’ 10 HZA'&'I:’?@--’---!_._.._._
k

@ 1mix[k'1} Q=192 Z=-0.1

e
-

TS .——::,7//]-‘[—1 -2.1.,_‘_5_2_[2\ rr te
| 20 k

Figure 12.5: Examples of complex exponential series

Example 12.2

The exponential function in Figure 12.5 illusirates the ambigucus character
of (12.12): the upper curve has been caleulated with an angular frequency of
! = 0.2a. Increasing & by L turps the value of the series by 0.27 rad in the
mathematically positive direction (froin the real part to the imaginary part). For
& = 10 the same direction as for & = 0 iy repeated because 1082 == 275 the absolute
value is reduced £o exp(—0.1x 10} = 1/e, however, because of the damping constant
5= {1

In the lower curve the angular frequency is £ = 197, The series makes almost
one full turn each time, as (1 is only 0.17 rad less than a whole circle. In comparison
to the upper carve, the lower curve does not seem to have a higher frequency, but
instead, a lower frequency, turning in the opposite dircetion. The exponentinl
series with angular frequency € = 1.9% is identical to the exponential series with

angular frequency @ = 197 — 27 = —0.17. We already know this phenomenou
from western 1novies, when the wheels of a wagoen appear to be turning backwards.
|

The ambiguousness of the frequency of discrete exponential fimetions is the
reason [or the ocenrrence of ‘Aliasing’ (compare Chapter 11.3.2), where sampling
cauges different frequencies to overlap. Becanse of this effect, for a spectral repre-
sentation of discrete signals, it is necessary to limit the frequency-domain to the
width 2.
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12.3 Discrete-Time Fourier Transform

It would be convenient to use the advantages oflooking at continuous-time sig-
nals in the frequency-domain with discrete-time signals, To this end we will be
introducing the discrete counterpart to the Fourier transform, the discrete-time
Fourier transform (DTFT). As with the Fourier and Laplace transforms, its use
in the froquency-domain requires an inverse transform, transform pairs, theorems
and symmetry properties.

12.3.1 Definition of the Biscrete-Time Fourier Transform

As a series alk] is only defined for discrete values of k € Z, we cannot use the
Fourier integral (9.1) introduced in Chapter 9. We therefore define the discrete-
time Fourier transform or the F. transform as:

X (%) = F{2[k]} = i zlke™ 7k (12.13)
P

It transforms a series z[k] into a contisuous complex function of a real variable (2.
X&) is also called the spectrum of a seres. In contrast to a continuous signal,
it is periodic wilh 2, s0

X (eI = X (7, (12.14)

This is easy to see, as cach term of the sum in {12.13) contains a 2x-periodic term
™ Tn order to see this more clearly, we write ¢/ as the argument of the F,
transtorm and define the Fourier transform over the unity circle of the complex
plane. This convention will make the transfer to the s-transform easier.

A sufficient condition to show the existence of the spectrum F, {z[k]} is that
the sum of the series [k} is finite:

Z |2[k]] < 0. {12.15)
k

12.3.2 Inverse Discrete-Time Fourier Transforimn

The definition of the spectrum of a sequence from {12.13) represents a Fourier
series of X (e}, The period is 2r and the Fourier coefficients are the values z[k].
In order to Tecover the series z{k] from the spectrum X (e7), we have to use the
formula for finding Fourier coefficients. Tt consists of an integration of X (¢#'?)eik
over one period of the spectrum

o |
b = 5 / X (a0 (12.16)

This relationship represents the swerse discrele-tune Fourrer transform.
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12.3.3 Common Discrete-Time Fourier Transform Pairs

This scetion contains the Fourier transforms of the simple sequences discussed
in Section 12.2. These were the unit mpulse, unit step function and bilaterat
expouential geries. Aw a concluding example we will determine the spectrum of a
rectangle function.

12.3.3.1 F, Transform of a Discrete Unit Impulse

To caleulate the F, transform of a unit tmpulse z{k] = é{k] we start with the
defining equation of the F, transform, and insert the unit impulse. The result can
be giver immediately, using the selective property of the unit impuise:

X = "skle ™ =1 | (12.17)
I

We thus obtain the transform pair

dlk]o--e1. (12.18)

The transform of a shifted unit impuise z{k] = 8k — «] leads to a linear change
of phase as for a continuous-time signak:

X(e/%) =3 5k~ kle7I = o7 (12.19)
k

and so the transform pair is

Hk’ — K| o-—e PR {12.20)

We can see that the transform pair {12.18) is a special case for £ = 0.

12.3.3.2 F. Transform of an Undamped Complex Exponential Series

To find the 7. transform of an undamped bilateral exponential series &%, we
start with the interesiing refationship

S ek = 2r Y " 5(0 - 2a0) (12.21)
k I

ihat we had derived from equation (11?7) in the last chapter. Now we age using it
to determine the spectrum of x[k] = e7¥5;

X = Z i)k _ 94 Z (51— —2rk) . (12.22}

E=—p0 k=
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The transform pair is

e 9x Y‘ S~ Qo — k) = (9:;?3) (12.23)

k_"-—DC

and states that the spectrum of an exponcential series e/ is in fact a delta impulse
at 2 = £2y. The ambignousness we discussed in Section 12.2.3 likewise applies to
the spectrum of the delta impulse at @ = Qo + 27y, v € Z. The resulting impulse
train in the frequency-spectrumn can be elegantly represented using the sha-symbol
we introduced in Chapter 11, The correctuess of the transform pair (12.23} can
also be confirmed simply by using the inverse F, transform on L) (%u)

A special case of (12.23) is the spectrum of the sequence z[k] = 1. If Qp = 0 is
put into (12.23), the transformation yields

2[k] = 1 o—e X (&) = 25 i (81 —2mk) = 11 (—2%) ; (12.24)

k=—o0

12.3.3.3 F, Transform of the Discrete Unit Step Function
The discrete unit step function £[k] can be expressed as the sum of s constant
term

e[kl = —00 < k < 0c (12.25)

lolr-—

and a bilateral step series with no middie value

L k>0
£olk] = (12.26)

1 k<o
E{!’»;«E;‘Lk]‘i*é‘z[}”] (1227)

The Fourier transform of the constant term £9[k] ean be ocbtained directly
from (12.24)

Fo{erlbl} = SR {1} = s (%) : (12.28)

To determine the Fourier transform of the second ferm e {k] we express the
unit impulse 6[k] by eo/k]

8lk: = eafk] — ealk — 1] (12.29)
Substituting {12.26) confirms this.
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Using the laws of linearity and displacement from Section 12.5, we obtain

Foleolk] —ealk 1]} = F{ealk]} ~ Fo{ealk — 11} = F{eafk]} — e O F {ea]k]}

(12.30)
together with (12.18) we then obtain [rom (12.20}
Fueak]} — e F, {eofk]} =1 (12.31)
and from here we see that
1 )
Flealk]} = T (12.32)

As we cannol divide by zero, (12.32) can ouly be used for 2 # .. .—27,0,2m, 4, .. ..
It 7, {e3{k]} weuld contain delta impulses at these frequencies, they would have to
be considered separately. With (12.26), however, £2[k] has zero mean and therefore
ihere can be no delta impulses at 2 = 2z, v € Z. It should now be evicdent why
we split e[k] up into e1{k] + 2(k]. By adding {12.28) and {12.32) together, we
finally obtain from (12.27)

. 1 1. 18

We now compare this result with the Fourier transform of the unit step function
in {9.92). We also found two terms there: one delta impulse and a term for which
s = jw came from the transfer function of an integrator. With the F, transform,
the discrete unit step function produces an impulse train instead of an individnal
impulse, The other term happens to be the transfer function of an accumulator,
and we will show that it in fact represenis the discrete counterpart of au integrator
(see Bxample 14.5).

12.3.3.4 F. Transform of a Unilateral Exponential Sequence

We will now find the F, transform of a unilateral exponential sequence xik] =
ak=]k] with ¢ €€ from the defining equation (12.13):

o )
X (e Za" —H Z(a eI, {12.34)
k=0
We know that the sum of ap infinite georetric series is

Zq" _ TL gl < 1, (12.35)

=}
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and from this we can directly obtain

x[k] = a*e[k] o— o X {7 = = 1

T lal<t (12.36)

Figure 12.6 shows on the lelt the first few values of this exponential series for a real
. and the right shows the magnitude of the spectrum. The spectrum is clearly
periodic with period 27, As (12.36) does not converge for a = 1, the spectrum of
the unit step function (12.33} is not contained in (12.36) as a special case.

X( €2
1.1. M4 a=0.9 j-|106 )
__._._._0 T k o ; 2,n 0

Figwre 12.6: Series x[4] and its magnitude specirum [ X (/)]

12.3.8.5 F. Transform of a Rectangle Series
We want to {ind the 7, transform X (e7%) of a rectangle scries with length N

?f’[k’-lz{ 1 for<k<N-1

0 otherwige (12.37)

as shown in Figure 12.7. Inserting this into the defining equation (12.13) leads to

x[k]

Figure 12.7: Rectangle series of length N

a finite geometric series

N1 ON

p ) 1 — e_—,}Q:’\.'

Sy e £ .
X(ey = $ omi% = o (12.38)

k=0



306 12. The Spectrum of Discrete Signals

Lthat can be rearranged as

e— ¥ (e:ﬂ‘“""} — =i sl HIH(N“)
= f) —_ 7

e 7% (e % ~ =¥ sm(“

X(e) = (12.39)

The result is shown in Figure 12.8.

X N=5 x@?)  N=20
| 20}

B |

\ \

\ ‘ ] |

0 0 2:rc

Figure 12.8; Magnitude spectrum of a rectangle scries for different N

12.4 Sampling Continuous Signals

Up to now, we have discussed sequences in general, without considering where
they come from or what they represent. Now we will examine sequences k],
that have come about from the sampling of continuous-time signals #(#). The
individual members of a series z{k] are the sanpled values of the continuous-time
signal Z(&kT), as in {12.1).

According to this simple relationship in the time-domain, a corresponding re-
lationship in the [requency-domain should exist, that means Detween the Fourier
transform of the sampled continnous-time signal and the spectrum: of the discrete-
time sigual.

The signal z,(¢) derived from the continnous-time signal #(¢) with idcal sam-
pling (see Figure 12.9) will first of all be represented by an impulse train

T {t) = E(t) - %m (,}) = #(RT)S(t - kT). (12.40)
k

We express the weighting of the delta impulses by the values w[k] of the discrete-
time signal (see (12.1))
wa(t) =Y a[kl(t - kT). (12.41)

ke
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Transforming (¢} with the Fourier integral (9.1) yields

a6
)&fﬁ (?w} = / Z T[L’]é(t = }\‘-T)(?H.jw{.df ll?.-i?)
ok
= z xlkje R
k

We see from comparison with the definition of the JF, transform (12.13), that the
spectra agree, if = w1 is understood to be the normalised angular frequency:

| Xo(ge) = X(e7). (12.43)

The periodic Fourier transform of the sampled continuous-time signal x, () Is
the same as the spectrum of che discrete signal #[&]. The dimensionless angular
frequency Q of X (7%} consists of the angular frequency w of X{e?), normalised
with sample interval T. The relationships hetween the continuous-thue signal
Z{t), the sampled contivnous-time signal ©,{{). the series of sampled values zlk)
and their spectra are depicted in Figure 12.9.

cortinuous signals discrete signals
TG
e i o
c B convert weights
| of Jitpulses 16’ [————#
o y - rumbers - '
M} ideal sampler Tolt) : (k]

1 t P

T .'équal spéiﬁtra ;
X(on X oy ~w with @=cil - X(aild)

Figure 12.9: Relatiouship hetween the F and F. spectrum

The relaticmship between F and F. spectra gives an imporiant insight that
allows us to transfer many important properties and theorems that apply to the
spectra of continuous-time signals to spectra of discrete-time signals. In the follow-
ing section the most important of these are given. it is easy to recognise that some
theorcnus, for example, the similarity theorem, cannot be applied to discrete-time
signals becanse of the sampling process.
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12.5 Properties of the F, Transform

As the spectrum of a series can be viewed as a spectrun of a continuous-timme
sighal that consists of weighted delta impnlses, the similarity, differentiation. and
integration theorems described in Chapter 9.7 are true for both F and F,. We
will diseuss the maost important properties brieflv. A summary of the properties
of the F and F. transforms can be found in Appendix Appendix B.8.

12.5.1 Linearity

From the linearity of the surnmation in (12.13). it follows directly that the principle
ot superposition still applies 1o the F, transform, and from the lnearity propovty
of integration, the same is true for the inverse . trapsform.

Fila f.rH -+ hg{h]}
FoH e F(e/) 4 d ey}

@ FLLFIE]} + b F-{glh])
(‘.F,,_l{F(gijﬁ)} 4 d‘}t'*“] {(]\:(PJ())} )
(12.44)

(&

Here a, b, ¢ and d can be any real or complex constauts.

12.5.2 Shift and Modulation Properties

A shift in the thpe-domain or frequency-domain behaves exactly ag with the F
transform ar the Laplace transform. Inserting (& — %] into the defining equation
(12.33).

2k — K] o8 0TI X (i) J (12.15)
" 1

is obtained. The shift, multiplies the spectrum of the unshifled sequence with a
lincar-phase term (sce Exercise 12.8), although the shift must be a whole number
of sample values, ie, v € Z.

Likewise, a shift in the spectrum by angular frequency 3y corresponds to a
madulation in the time-domain with this frequency:

el 0K 2] o e X (18 00Y {12.46)

This can alse be shown using (12.13) (Exercise 12.8).

12.5.3 Convolution Property of the F, Transform

1t is useful o know, when finding the response ot & discrete system to a discrete-
tine signal. that convolution in the thne-domain corresponds to multiplication of
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the two F. transforms. Tor a sequence, the discrete convolution is defined as

ylk] = z[k]<h[k] = Z e[x) Ak — &) 1
L (12.47)

= Dlk] x k] = Z alk — ]

This will be more accurately discussed in Chapter 14.6. in conneclion with discrate
I/1'[-systems. By nserting it into (12.13). i can be shown (see Excrcise 12.9). that

ulk:

It

s ”}] s h [};] ‘
(12.48)
}Ir [(,f ) ) — ‘X. ((;!-"'i [¥] } }.} {VJ"‘Q ) ‘

12.5.4 Multiplication Theorem

Multiplication in the time-dowmain leads. as expected, o convolution in the
frequency-domain. As both convolution terms are periodic, the elassic convolution
integral would not converge, The multiplication thecrem, however, fortunately
containg eyclic convolubion, which we already kuow from Chapter 11.2.4:

Flk] - glk] o—w 5% Fe"Y®G (M) = 5}} | / FiemMG{e!=Mydy | (12.49)

-

This can be shown by inserting the right side in the definition of the inverse F,
transform with the help of the modulation theovem (sce Exercise 12.10).

Example 12.3

In Bxample 9.11 we saw that the duralion of a signal under measurement de-
termines the resolntion of the speetral image of the measured signal. The influence
of the finite duration of observation on the measured signal was deseribed by mul-
tiplying the signal with a finite window in the time-domain, The spectrum of
the measured sigial iy then oblained from covvolution of the original signal with
the spectruin of the window. Long measuring windows are advaniageons as they
corvespond to thin spectra (see Figure 9.20).

The diserete cage is exactly the same, Trimming a signal to finite length cau be
deseribed by multiplying it with a rectangle series of Lhe desived length. The spec-
trurn of the observation window approximates the spectrum of the series {12.24).
it the rectangle series s very long (see Section 12.3.3.5, Figure 12.8). A Jonger
window of observalion leads to a better frequency resolution. -
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12.5.5 Parseval Relationship

The Parseval relationship can be obiained az a special casc of the mulliplication
property with gik] = f*[k|:

o

SR = 51; / [F (™) a0 . (12.50)

k0o

As with continuous-time signals, the Parseval relatiouship states that the enevgy of
a time signal, defined here by summation of | k]|, can also be found by integrating
with respect to [F{e™)|? in the frequency-domain.

12.5.6 Symmetry Properties of the Discrete-Time Fourier
Transforin

We define even and odd sequences so that the symmetry axis goes exactly throngh
the clement z{l):

Even sequences Tolk] = gk {12.51)
Odd sequences &, [k] = —2y,[~4]. (12.52)

Accordingly, for odd sequences x, [0 = 0. Every sequence z[k] can be split into
an even and an add part:

zglkl =

rylk] =
Adding both equations confirms that:
xglk} + 2o [k] = z[k}. (12.55)

Generally, for complex valued signals z{k], the ., transform has the same pattern
of symmetry as the ¥ transform (see Chapter 3.5):
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k] = Relw,lkl} + Refx,[Bl] + ghm{ag[kl} +  Flm{x,[k]}

I

X (e = Red X, (/M) } +Re{ X, (/) + 3 Im{ X, (")} + 7 Im{ X, (¢")} .
B - (12.56)

Example 12.4
We have already met the transform pair (12.24):

zlk] =10 X(e/?) = _U_L(%) '

As x{k] = 1 is real and sven, we expect a real even X (&) from scheme (12.56).
In fact, .LLL(%) does turn out to be real and cven.

Example 12.5

From (12.58), we expect conjugate svinmetrical spectra for discreto-time signals
with real values. In parlicular,

In{ X (e™)} = ~Im{X (¢™7*)} {12.57)
Al the same time, however, the spectrum is 2% periodic, so
I{ X ("N} = I { X (427N p e Z, (12.58)

¢an only fulfill these conditions, for example, if 2 = 7, for

Iin{ X {’} = 0, {12.59)
The spectrum of a series with real valnes ig therefore real lor
Q=...—3x, -7, 3n,.... The transform pairs (12.20), {12.33) aud (12.39)

confirm this.
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12.6 Xxercises
Exercise 12.1

1 C e . .
Regular sampling with interval T = 1 of the exponential function ot} = el7+5)
gives rise to the exponential series z[k] = ¢ P17 Carry out the following steps

1
separately for a) w = 2% and b} w = 107 where 5 = In 3

o Give zu(t} = Re{x(t)} and w;(t) = Im{x(¢)}, and sketch both for ¢ € [0;1].
o Give ¥ and £, and mark the sample values z[k} in the sketches of z(t).

Exercise 12.2

Determine the normalised damping constant ¥ and normalised angular frequency
{2 of the complex exponential series a) e 2% b) 0.9% ¢) (—0.9)%, d} j*. e) (1—:-{) k.
£} (=3, &) 5. hy 5%, Tor all parts, choose §2 in the region [0; 2w}, Which series
are tho same?

Exercise 12.3

Verify the inverse F, transforin (12.16) by inserting the defining oquation of the
F. transform (12.13).

Exercise 12.4

Jatculate and sketch the F, transform of the series zfk] = st [%k] using varions

methods, Tt will turn out to be the impulse response of an important system.

a) Calculate F, {2{k;} with the defining equation (12,13).

b} Pirst caleulate X, (jw) = F{a (8)}, with 2, (8) = Zé('{‘. — kT) w[k] and then
give F, {x{k]}. by using (12.43). Sketch the result.

¢) Show that results a) and b) agree, by tinding the Fourier series of X{e/™),
Note that in this case a fundamental period tg st be ysed. instead of a
fundamental angular frequency wy, as it is a functwon of frequency that you
will he representing as a Fourier series.

d) What kind of filter has the impulse response x[k]7?

Exercise 12.5

A low-pass filter with impulse response hq[k] has spectrum H) (¢!}, One period
has been sketched. By reversing every second sign of by [k]. & new Rlter is created
with Ao (k] = (—1)*h[k]. Calculate and sketch Ha(e?*).
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What kind of filter is fip[&]?

Exercise 12.6

In the system shown below, the low-pass filtering of a continuous-time signal is
carvied out with the help of a discrete low-pass filter. The input signal x{t) is
given by s spectrum X {jw}.

I('I} : x. [” IiAI ‘Ik] },t( ” }(0
| [eal \__." converter i foonverter| e
sampler 1 Hy (™) o RO > Ha(jw) b

X(jun

—fY, -0 42 w2 m,

g

Cooverter 1 trausforms the continuous-time delta impulse train x,({) nto a
discrete-time series @[k], where the values of the series w[k] are the weightings
of the della impulses (x[k] = £(kT)). Couverter 2 converts the discrete-time series
ylk] into the continuons-time signal 4, (¢} i the xamne way.

The signal r{#) is sampled at the Nyguist frequency.

. . A | i
a) Cive T and draw the spectrum of &, (i) = x{f)- T ] J..J_(il--;}.

b} Draw X{e?%) = F, {x[k).
¢y I8 Y (/) = F {ylk]}:

-
2
Y{e') = T-X(%  for |0 <

V(e = 0 for <Y<

o |

Determine and draw Hy{e?™?). Draw Yo{jw)e —0y,(2).

_ ‘ . 1 _ 3

d) Hx{jw) is a RC-low-pass Nth- order Alter with corner frequency --w,, and
the pass section heing amplified by a factor of 1. Give Ha(jw) and deternmine
N s0 that spectral repetition of the baseband (where lw| > wy) is damped
by at least 18 dB. Note: see Chapter 10,
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Exercise 12.7
Show (12.23) by using the inverse F, translform on 11{ [‘—éﬁ!ﬂ)
Exercise 12.8
Show by using the delining equation (12.13) of the F, transform,
a) the shift theorem,
b} the modulation theorem.

Exercise 12,9

Show the convolution theorem (12.48}). You will need to use the convolution smn
for fk] * g[k] and the defining equation (12.13) of the F..

Exercise 12.10

Show the multiplication theorem (12.49), using the cyclic convolution integral and
inverse transformation of the result with {12.16).



13 The z-Transform

In Chapter 12 we got to know discrete-time signals z[k] and their spectra X (e7*?)
in the form of the discrcte-time Fourier transform F.{z[k]} from (12.13}. The
correspondence between the F, transform for discrete-time signals and the Fourier
transform F{x(t)} for continuous-time signals can be expressed, for example, by
the relalionship (12.43). For continuous-time signals, however, we also know the
Laplace sransform £{x(t}}. which assigns a function X (s)e—ox(t) of the complex
frequency variable s to the time-signal x(f). A comparable transformastion for
discrete-time signals is the z-trapsform, It is (clearly) not named after a famous
mathkematician, bul instead after the letter normally used for its complex frequency
variable: z.

Its discussion i this chapter will deal with the same topics as in Chapter 4.
when we discussed the Laplace transforim. From the definition of the 2-transform,
we flrgt of all find the relationship between the s-transform and the Fourier frans-
form, and then the relalionship between the z-transform and the Laplace trans-
form. After thai, we consider convergence, and the properties ol the z-transform
i’ll'ld uverse z—t,rmlﬁform.

13.1 Definition and Examples

13.1.1 Definition of the Bilateral z-Transform

The general definition of the z-transform can be used with a bilateral sequence
x[k] where 20 < k < oo, Tt is

X(2) = Z{z[k]} = i z[kjsF: 2 € ROC €. (13.3)

k=—o0

It represents a sequence xik|, which may have complex elements, by a complex
function X(z) in the complex z-plane. The infinite sizm in {13.1) usually only
converges for certain values of 2, the region of eonvergence.

We can think of (15,1} in two ways: by comparison with the Laurent sevies of
a function of & complex argiunent (see (4.15)}, we recognise that the values of the
sequence xk] represent the coeflicients of the z-transform’s Laurent series at the
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point zy = 0. We can therefore take many properties of the z-transform directly
from the knowu propertics of the Laurent seties.

For the second interpretation we need a resull from Chapter 14, There woe will
see that the sequence 2% is o characteristic sequence of a discrete-time LTT-systean.
It ig the discrete counterpart to the eigenfuncijons e of the continuous-time T.TT-
system from Chapier 3.2, The :-transform projects o discrete-time signal ouko
the characteristic series of an LTT-system. We will see that we can therefore form
the inverse z-transform by overlapping the characteristic sequences of which the
signal is made up.

The transform pairs of a sequence 2[&} and its z-transform X (=) is again written
with the familiar symbol

x[k]o--aX{z).
As we discussed in Chapter 8.2.1. it has no mathematically sirict mesning, and is
used simply as a typographical symbol.
13.1.2 Examples of the z-Transform

We will now show the properties of the z-transform with some simple oxampies,
paying particuiar attention to the convergence properties of the swn in (13.1).

Example 13.1

We begin by calcalating the z-transform of a sequence of finite length from
Figure 13.1:

3 k=0
) 2 k=1 s
x|k = L] =2 {13.2)

J  otherwise

Figure 13.1: Discrete triangular sequance w[k] from Bxample 13.1

As only a few values of the series are not zero, we can write down the sum
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in {13.1) directly

X(z) = 2% 42248427 4270 = - ! where 0 <

7] < 0.

{13.3)
[ the rational representation of the function of z. we obtain a denominator poly-
norial with a double zero at & = (. As the sum in (13.1} only has a finile number
of terms, Il remains finite for ¢ » region of convergence of the
z-transform X{z) therefore encloses the entire complex plane with the exception
of the origin.

Example 13.2

We have already met exponential sequences in Chapter 12.2.3. We will now
find the s-transform ol & genersl right-sided exponrential sequenen

sk = o 2fk], eeC. (13.4)

Figure 13.2 shows its behaviour for @ = 0.9¢7™/% {compare Fignre 12.4).

Relx{k1}
Imix[k]}
[ e S “—”4{_,.Z‘/
R ;s“'—‘\‘“l‘:[‘fruﬂihi i
k
Figure 13.2: IExample of a vight-sided exponential series
From the defining equation (13.1) we obtain
- o = fu * 1 z
X{z) =§;}@ Z é (j) v {13.5)

The infinite sum unly converges for [a| < |z|. which means all values of » in the
complex plane that le outside a circle witl radius o). This region of convergence
ig the halched arca shown in Fig 13.3. The z-transform has a zero at 2 = 0 and a
pole at z = a. The circidar boundary of the region of convergence is determined
by the magnitude of the pole,



318 13. The z-Transform

Im{z}

/ <?" pole z=a

72 /7 Relz}
///})/} %zem

z=()

Figare 13.3: Region of convergence of the function X (z) from Example 13.2

For & = 1 the sequence x]k] represents the unit step function gfk} from (12.6).
Its z-transform is

Z{elk}} = z:—l 2 > 1 (13ﬂ

Example 13.3

The z-tramsform of the a lell-sided exponential sequence from Figure 13.4
okl = —a* e[k ~1], acC (13.7)

is

Figure 13.4: Iixample of a left-sided exponential sequence

This sum converges for [z] <0 |a], which means all values of 7 in the complex
planc that He within a cirele of radius o (see Figure 13.5). The boundary of the
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Figure 18.5: Region of convergence for the function X{z] from Example 13.3

region of convergence is circular here too, and ivs radius is equal to the magnitude
of the pole.

In comparison to Example 13.2, we notice that the z-transform of the right-
sided exponential sequence (13.4) and the left-sided oxponential sequence {13.7)
have the same form and only the regions of convergence are different (Figures 13.3
and 13.5). This emphasizes how necessary it is to specify the region of convergence.
Without it, & unique inverse transformation is impossible.

We are familiar with this situation from the Laplace transform. In BExamn-
ples 4.1 and 4.2 we considered left-gided and riglht-sided continuous-time signals
that are likewise only distinguished by the region of convergence {see Figures 4.3
and 4.4),

13.1.3 Illustrative Interpretation of the z-Plane

We can interpret the individual points of the s-plane in a similar way to the s-
plane in Chapter 3.1.3. Figure 13.6 shows the corresponding exponential secquence
2% for different values of z.

The valucs 2 = ¢ pn the unit circle correspond to the exponeniial series
e? ¥ with constant amplivude: 2 = 1 leads to a scries with constant values because
3% = 1% = 1, while z = —1 is the highest representable frequency, because
etk = (—1)*. Al other values on the unit circle represent complex exponential
oscillations of frequency 2 with —7 < £ < o, Complex coniugate values of z
are distinguished by the direction of rotation. Values of # = re/*? within the unit
circle {r < 1) belong to a decaying exponential sequence and values oniside the
unit circle {r = 1) belong to a growing exponential sequence. In Figure 13.6 the
exponential series 2* are each only shown for & > 0. This should not lead to the
misinterpretation that we are only dealing with unilateral sequences. sinee also for
k<0, 2840,
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The reader is reconnnended to memorise the illnstration of the z-planc {Fig-
ure 13.6). It can be the key to intuitive understanding of the properties of the
z-translorm and the system function of discrete LTT-systems.

I {z]

faster
rotation
P il

L

}i"'/lm El{c Lm , Re }m E: : le Be
111 Kl
-Hﬁ.‘f‘ T At 1] e
UT*

l ! ’ \ R;{z}

BC component

i i
/ decaying

maximum . Re
frequency . | k{:l
/ e o7 E '2/7/ i
increasing — F
faster
rotation

Figure 13.6: Mustration of the z-plane

13.2 Region of Convergence of the z-Transform

We can draw up rules for the region of convergence of the s-transform that are
very similar to the corresponding rules for the Laplace transform in Chapter 4.5.3,
whete we explained the properties of the Luplace transform’s Tegion of convergence
with a gertes of examples (Examples 4.1 to 4.5}, We conld also do this in the case
of the z-transform; Examples 13.2 and 13.3 actually correspond to Examples 4.1
and 4.2 respectively. We will, however, forgo continuation of the examples for
discrete-time functions, and will just give the vules for the region of convergence
in a general form. ‘They each refer to a scouence w[k] and jits z-transform X (z)
from (13.1}.
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i.

3.

in }

The region of convergence X(z} im general consists of a circle
around the z-plane origin at = = (.

As only the magnitude of = is responsible for the convergence of a z-
transform. all points on the z-plane with the same magnitude have the same
comvergence properties. This result is also yielded by the known convergence
properiies of the Lawront serics.

. If z[k] is a right-sided signal, the region of convergence lies outside

a circle through the singularity furthest from the origin.

In Example 13.2 we saw that lor a right-sided exponential series, the magni-
tude of the pole defines the region of convergence, Similarly, {or right-sided
sories with nmliiple singularities, it is the singularity that les furthest from
the origin, The circle itself is not part of the region of convergence.

If wik| is a Jeft-sided signal, the region of convergence lies within a
circle through the nearest singularity to the origin.

I'he magnitude of the pole also defines the region of convergence lor the
left-sided exponential series from Example 13.3, although in this case it les
within a cirele through the pole. For left-sided sevies with multiple singular-
ities this Js Lre for the singularity nearest to the arigin, The barder itself s
not part of the region of convergence.

It z{k] is bilatcral, ie. the sum of a left-sided and a right-sided
series, then ihe region of convergence is an annulus between two
singularities, if the left-sided and the right-sided regions of con-
vergence overlap.

Every bilateral sequence can be formed by putting together a left-sided and a
right-sided part. The individual regions of convergence for the z-transforms
of each part can be found from rules 2 and 3. For a bilateral sequence
the region of convergenee consists of the intersection of the left- and right-
sided parts. This intersection is an annulus whose inside border is set by
the outermost, singuilarity of (he right-sided term. and whese outside border
is set hy the nnernmost singudatity of the left-sided term. I singularifies
from the right-sided part lie outside singularities from the left-sided part.
the futersection is empty. and therefore the s-transtorm does not converge,
In this case we say the the z-transform does not exist.

. Xiz) is analytic in tho entive region of couvergonce. As the civeular

region of convergence s bounded on the inside by the smgularitios of the
right-sided part. and on the outside by the singularities of the left-sided
pacl. it eontaing no singularities lwsell. The z-transform is analytic in the
entire reglon of convergenice (16 s nlse said to be regular. or helomorphac).
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This means that it ean be repeatedly differentiated, and can be interpreted
as a Laurent series.

6. If the sequence rfk| is of finite length, X () converges in the entire
z-plane, except possibly for z =0 and 7 — .
In Example 13.1 we saw that a sum of a finite number of terms yields a
finite nurnber. A precondition of this is that all members of the series @k]
are finite: le{k]l < oc and 0 < |z| < x. The convergence for z = 0 and
z = 20 depends on whether the series wlk] comtaing non-zero values for k > 0
and k < 8.

13.3 Relationships to Other Transformations

Close relationships exist between the z-tvansform and other iransforms we already
know,

e The z-transform and the Tourier transform F. of a series are closely
connected, like the Laplace transform and the Fourier transform F of a
continnous-time sigual (see Chapter 9.3).

o If a sequence 2[k] has been created by sampling & continuous-timne signal z{£),
the values of 2[k] can be interpreted as the weightings of individual Impulses
in an impulse train (see Figure 12.9). Between the Laplace transform X () =
L{x{t)} and the s-transform X (z) = Z{a{k]} there nmust Lkewise be a close
connection,

We will now examine more preciscly these relationships between the individual
transforms.

13.3.1  The z-Transform and Discrete-Time Fourier Trans-
form
When the z-transform of a sequence [k} is only calcutated for values z on the uait
cirele -
=6 QeR, (13.9)

the Fourier transform of this sequence is inmediately obtained. By comparing the
imstructions for calenlating the z-transform and the Fourier transform we recognise
that

Z{ulkl} =3 alk]z* Fu{zlkl) =) alkle ™, {13.10)
L

K

We have now found the relationship between the two transformations

! Folalkl} = 2Lk} [pesn J (13.11)
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This relationship corresponds to the relationship between the Fourier transform of
a continuous signal and its Laplace transfor (9.9). It also becomes clear why the
Tourier transform X (e/*) is not simply defined on the real axis §2, but instead on
the unit cirele 7. For the diserete-time Fourier transtorm, the unit cirele of the z-
plane is the equivalent of the imaginary axis of the s-plane for the continuous-time

transfornl.
This relationship can Le generalised if we consider the cirele of radiug r de-

scribed by
ze=red Gy <o (13.12)

instead of the unit circle on the 2-plane. For all values of 2 in {13.12}, the z-
transform of 2{k] can be given as the Fourier transform of the series zlk)r—*:

X(z) = X(red) =3 alkflred®) " =3 gl e ik (13.13)

& %

This vields therefore
Folaklr™ ) = Z{2[k]} Lcrero - (13.14)

The relationships (15,11} through to {15.14) only have meaning if. of course,
the Fonrier transforms of wlk] and «[k]r—* exist, and the unit civcle of the z-plane
ov cirele with redius #, belong to the region of convergence of the z-transform.
H the unit circle does not belong to the region of convergence of the z-tranform,
that does not necessarily mean that the Fourier transform does nol. exist, instead
that the Fourier transform is not analytic. There arc actnally even sequences that
have a Fourier transform but not a z-transform, for example, z[k] = 1. I on the
other hand, the r-transform convergences on the unit circle, the Fourler transform
X (e can be analytically continued when ¢ is replaced by z. The observations
made about Fourier and Laplace transforms in Chapter 9.3 also apply in this case.

Example 13.4
What i3 the z-iransforin of the series which has Fourier transform
X(e™) = 14 cosQ?

X (e} can be differentiatied with respect to € any number of times. and is
therefore analytic, when we replace ¢t by = With

X(e#y = 1+cosQ =1+ 5&-’9 +5e -t

we obfain

[
+
B =

]

B | =
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The vegion of couvergence is she whole z-plane excepting @ = 0. 7 = 2. and we
must, therefore be dealing with a series of finite length. Equating coefficients (13.1)
yields direclly

1

- k=

5 1

T k=10
xlk] = i

2

O othorwise

13.3.2 The z~Transform and Laplace Transform

The relationship between a samnpled continous-time signal ., {f} and the series of
sample values x[k] from (12.2} aud Figue 12,9 is

T 1)—2 ARj8(t — KT . (13.15)

T i3 the sampling interval. The Laplace transform is found with the help of the
selective property of the delts impulse

It

Lle, (0} Z x[k]3(L — K™ et = Z-.t{k:]e*.e;‘.q.. N
I

k.

j
— X

= > alsh = Z{ell]}  with z=e T, {13.16)
k

or coucisely

Xu(s) = X{e*0). {13.17)

The z-transtorm X{z) of the sequence TL] iy therefore the same as the Laplace
transformn of the sampled continuons-time signat @, (@) for

z=¢"". (13.18)

In order to better understand this relarionship betwoon the complox frequency s of
a continuous-time signal and the complex frequency 2 of a series, we will represent
il as o projection from the s-plane onto the z-plane, Figure 13.7 llustrates the
geomelric relationship for a Laplace trapsform which coutains the imaginary axis.
The assignment (13.18) represents the:
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s imaginary axis 8 = 3w of the s-plane as the unit circle ¢ = e of the z-plane,
e the left half of the s-plane as the arvea inside the nunit eircle ou the z-plane,
e the right haif of the s-plane as the area outside the unit civele on the z-plane.

If the region of convergence of the Laplace (ransform contains the imaginary
axis of the s-planc (a8 shown in Figure 13.7), then the region of convergence of
the splane containg the unin civele.

The way the unaginary axis of the s-plane is projected onto the z-plane as the
unit circle is of particular interest. This projection obviously canuot be inverted,
as all of the poiots

2w
8, = jiwg with w, = _i:: peZ
of the s-plane would be projected onto Lhe point
3# . e.-s“’T . eﬂ];nw‘,'f‘ - t'";ﬂ'Zﬂ' =1, V‘U

ol the z-plape. Correspondingly the points
8 = (g + wo)

would be projected onto

sy = T = edtvua THweT) L pjweT Y.

The [requency w, = 2r/T i3 just the angular samplivg frequency (see Chap-
ter 11.3.1).

Through the projection (13.18), the imaginary axis s = jw thorefore becommes
transformed 1o the unit cirele of the z-plane, where the cireuinference of the unit
circle corresponds to a section of the imaginary axis which has the same length as
Lhe sampling frequency we. The central stalement of the sampling theorem can
be eonstructed divectly from the definition of the projection {13.18).

The propertios of the projection [13.18), projecting a vertical line in the s
plane outo a circle in the z-plane are the sare {or the Imaginary axis as for aay
straight line parallet to jt. From s = oy + jw with a fixed value of oy. it follows
with (13.18) that

2= F:irfn-i--_'}w)f!‘ — ?‘C'?WT

whare ¢ = e707 {13.19)

Variation of the values of w deseribes » (13.19) as a circle about the origin with
vading v Vertical lines in the left half of the s-plane are projected into the inside
of the unit circle of the z-plane (see Fignre 13.7) and lines in the right half are
projected to the outside of the unit circle.

The Laplace transforn of the sampled continuous-time signal (13.15) is periodic
with the samphng frequency w, = 2/ i w, s @ " FFMabT = =57 g 9y 2 72
in (13.16). The values of X,(s) within two adjacent dashed lines in Figure 13.7

horizontal steip covers the whele s-plane,
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s plane o z plane
unit circle Im

1. ;
? - A jor- axis
A Pl
?7 . ; ;"%’ 1
T NAT

R / \

: sT=zxmj, £37j, ... sT=0, £27j, =4, ...

Figure 13.7: The relationship between the z-transform and the Lapiace transform of a
sampled signal. The s-plane has been projected onto the z-plane with z = %7,

Examptle 13.5

‘T'he z-transform of the discrete unit step funciion €[k} (13.6) is

Z{e[k]} = ““TT |2} > 1.

We now arrive directly at the Laplace transform of the continuous-time signal

e 1 o
T () = Zé(t —k)=¢ (t + —2-) - L)
k=0
by setting z = e*.
XR(SJ = ;";:l—i" . |(‘13[ =1
or XK.(s8) = ! Ref{s} =0
mld = [ — e~ . L2, _S -~

13.4 Theorems of the z-Transform

The same holds for practical application of the z-transform as for the Laplace
transform, which we have already covered. Calculating the z-transform of a se-
quence hy evaluating the summation formula {13.1) only leads Lo {13.3) for very
simple sequences x{k] (compare Example 13.1). For other cases, we try to refer to
these simple series by using some general rules, These general rules will he sum-
marised by a series of theorems that have a lot of similarities with the theorems
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of the Laplace transform (see Chapter 4.7}, That is no coincidence, as we saw
in Section 13.3.2 thai the z-transform of a series can he thouglt of as a sampled
continucus-time gignal consisting purely of delta impulses. Ut should be clear that
many properties ol the Laplace trassform alse apply to the z-transform.

The most imuportant theorems of the z-transform are summarised in Table 13.1.
‘They can also be shown without referring to the Laplace transform by inserting
them into (13.1). In contrast to the theovems of the Laplace tranaform, the inde-
pendent variable is defined only for integer values. In the square brackets [ i, no
real values arc permitted. and correspondingly, for the shift theorem, only integer
shifts & € Z are allowed. As for the similarity theoretn (4.24), for sampled signals
the only scaling of the time axis that is permitted is @ = —1, s0 that bocomes
the time reversal theoremn for the z-transform. Reversing the index of a series of
values can be done simply by reading them backwards.

Table 13.1: Theorems of the z-Transform

Theorem Time-domain Z-domain New ROC

Linearity ax[k] + bylk] { aX(z)+ bV (2) { ROC2 ROC{z}N ROC{y}

ROz} 2 =0 and 2 —
Shift xlk — &} T8 X(z) x
considered separately

Modulasi bk = ROC = {7 |2 € ROC{x
odulation a”xlk| X (a) ROC { \a e ROz }}
Multiplication _ dX(z) ROC{x}: z =

L krfk] -z S _

by k > considered separately

Time reversil wl-k X(z™hH ROC = {z|z~' € ROC{x}}
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Example 13.6

As an example we will show how the shift theoremn of the z-transform can be
derived from the shift theorem of the Laplace transforim (4.22)

Clealt — 2} =e7*" X, (s). s<€ROC{z}.

We make &, (1) a sammpled continhous-time signal, that cousists of delta impulses
with separation T = 1 (13.15). As we want to fix the location of the sample
points in time, ouly displacements of z € Z are permitted. The z-iransforn
X({z) of the series xlk] that corresponds to z,(#) can be obtained with (13.17) as
X(2) = Xuls)),p, .- wnd it then follows that

Zafk— 2]} =7 MHTY (In2) =z TX(2).

The region of convergonce of this z-transformm might only change at the points
z =0 and &z = co. Of course, the shift theorem can he just as easily shown by
puiling @[k — 7] into the definition of the z-transform:

Zx{k - z—_]g—k Z:Eiﬂz—{wr)
k ¢
z7F Z x[ffz*
A

=T 2{alkl}
Note that delaying a diserete-line signal by one sample corresponds to multiplyine
by 27!, This makes z~! the system function of a simple delay circuit and the most
important. and clementary transtorin for the analysis of discrete-time systems,
which we will desl with in Chapter 14.

Z{xlk - ]}

§
il

I}
|

13.5 Inverse z-Transform

In Section 13.5.1 we Wterpreled the =-transform X {2} as a Laarent scries with
coefficients giveu by the values of the sequence z]k]. To invert the z-transform
x[k] = Z27Y X (z)}. we can therefore use the formula that calenlates the coeflicients
of a Laurent gseries:

wfkl = 5;?; % Xz e = 27X ()], (13.20)

The integration follows a closed path around the origing in a wathematically pos-
itive divection. The path of integration wust both enclose the origin and stay in
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the region of convergence of X(z). It the series 2[k] has finite length, it is very
simple to find (13.20} from the Canchy integral (5.13) and the vesulting residue
calculation (Chapser 5.4.1), In the expression

‘\:{3):&-...1 - Z‘,”[N];——H/:k—l - Z x[H]__:-—H+ﬁ:—l
9 £
every term within the path of integration is analytic with the exception of poles at
= . From (5.21) it follows that only the simplest pole a[x]=7" for & = k gives
a !C:aldl_ll!l“n. and for all other terms the ring integral is zero:

fX(.‘:):r’“"ldz - fz sl = Z {:z:[:.‘.jz' k-l

= f wlkbz Ve = 2k (r.z2n

For a general bilateral series 2{4] with singularities within the path of integration,
[k} must be split inlo lelt-sided and right-sided series and with quitable\ substi-
tution z — z~! the conditions for (13.21) must be mel. Then (13.20) can also be
shown generall}-‘.

Similar to the inverse lorm of the Laplace trangform (Chapter 4.2}, we can infer-
pret (13.20) as a superposition of complex exponential series. Tn Chapter 114.4 we
will show that complex exponentizl serics are characteristic sequences of discrete
systems and that the z-transform is therefore particularly suitable for invesiigating
and describing such systems.

For the case where the region of convergence encloses the unit circle of the
-planie, an inverse formula can be created by parametyicising the unit circle with

s=elft < Qan (13.22)

which only requires one integration of a real variable. From (13,223, with differ-
entigtion, we obtain

dz = 3e7tds) (13.23)
Substitution of z into {13.20) then vields
w
1
s ! ;0 RUICER N L ST 2.3
vk = 24”)5‘( e dx ,}ﬁ/’\( Jel SR dGy (13,248
-

This 1s exactly the same as the inverse formula for the Fourier transform {12.16)}
But since we find the Fourjer transfornt of a sevies on the nuit circle of the z-plane,
i is of conrse ne longer surprising.

Just as with the inverse Taplace transform, we avoid evalualing an integral
expression for the inverse z-transform if there are simpler ways of recovering the
series wlk]. These methods exist for rational {raction s-transforms, which are the
ldind we most often eucounter, and they are
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» for sequences of finite length, assipning each term in the scquence a power
of z {compare Example 13.1),

o for sequences of infinite length, decomposing the z-transform into known
expressions, for exampie, with partial fraction expansion.

1t would be useful to know from looking at a z-transform, whether it eorresponds

to a finite or infinite series, We put X (2) in rational fraction formn and consider
the denominator polynomial:

e It the denominator polynomial of Nth-order is % (it only has one zero N
times at @ = 0} then X{2) can be written as a Laurent series with o finite
mmber of terms. The values of 2[k] can be read directly,

e Il the denominator polynonial is a general polynomial in 2. where, apart
trom 2% there are also lesser powers, then i also hag zeros outside the origin
of the z-plane. Pariial [raction expansion for these zeros yields a sum of
terms similar to (13.5), where each has an exponential sequence The exact
form of the exponential sequence depends on the region of convergence of
X(2) {compare ¥xaniples 13.2 and 13.3).

We will deal with both cases with an example,

Exaraple 13.7

Th; ;"tra- S10I7 3.-" — 9
ci I3 ) /'. . 2 + 32’ i) 14.2 ;
a o T (a) 1 N (l.:‘;‘-«! }

only has a double pole at 2 = 0 and no others. The corresponding series =/k] can
therefore only have a finite nuisber of non-zero values, By dividing wo obtain

N
X(z)= 9 afkle =82 +5+3:7 =577, (13.26)

=

The coefficients can be read directly (compare BExample 13.1):

3 k=-2
5 k=10
zlk] = ZH{X(2)) = 3 k=1 . {13.27}
=5 k=2
0 otherwise

Figure 13.8 shows the series x[&] obtained from X{z).
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x[k]

1L

2
-3 -2 -1 1 l 3 4 k

=51

Figure 13.8: Series x[k] obtalned from X (z) in Example 13.7

Example 13.8

The z-transform

. 41
X(z) = 22k 1] K

has two numerator zeros (poles) outside the origin of the complex plane: z% —
252 4+ 1 = 0 gives z, = %, Zpz = 2. As the region of convergence lies outsude a
cirele around the origin, we expect a right-sided series zfk] = Z 1{X(2)}. Ifit is
possible to express X{z) as the sum of Ltwo terms (like (13.5}), we can assign each
tevmn an exponential oscillation. Direct partial fraction expansion does not lead to
the goal ag it produces a sum of the form

> 2 (13.28)

. A, A; -
X{z)=Ag+ —— 2 (13.29)
£ En = Ipz
while we need an expansion
X{z)=FBy+ Bj— —— 4 By—~ (13.30)
| T Eye

to determine the exponential terms. Heve it helps to expand X({z}/~ into partial
fractions, instead of X(z).

X(z) 2+ By Iy By 1
= = -4 —= 13.31
z z(_z—%}(_z—?) z+z——%+z—2 (13.31)

Determining the partial fraction coefficients, for example, by equating coefficients.
leads to By = 1, By = -2 and By = 1. Muitiplying by = and term-by-term
inversion aided by Example 13.2 vields the series

X(z) = 1-= (13.32)
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=
Il

k
i - ,
81k) ~ 2 (§> efkl + 2%¢[k]. (13.34)
|

13.6 Pole-Zero Diagrams in the z-Plane

As with the Laplace transtorm of continuous signals, with the z-transform of dis-
crete signals, ralional fractions often appear. They corvespond to system fauctiony
of diserete LT -systems with a finite munber of internal state-variables. which we
will disenss in detall iv the next chapter. Rationat fraction z-transforms are -- ox-
cept for a scaling factor — completely defined by their poles and zeros and can be
represented by a poleszero diagram in the z-plane. As we have already mentioned,
the z-transforms of signals of finite duration only have poles at the origin of the
z-plane, while signals of infinite duration can have poles at any other points.

Example 13.9

The pole-zero diagram of the z-transform from Example 13.7 has a double pole
at the origin and two complex conjngate zeros that are shown in Figure 13.9.

Iz}

1

Figure 13.9: Pole-zero diagram for (13.25)

—  Fxample 13.10

The pole-zero dingram of the z-transform from Example 13.8 has two real poles
and one real zero (Figure 13.40).
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In{z}
1

L1

057 2 Rels)
|/ ’

v

-1

Figure 13.10: Pole-zero diagram for {13.28)

With the rules in. Chapter 10 (Bode Diagrams) the magnitude and phase of the
Vourier transform can be estimated from the pole-zere diagram of the z-transtorin
after some practice. Unlike Chapler 10. however, the unit cirele of the z-plane is
used and nob the imaginary axis of the s-plane, and it is the angle and distance
to the poles and zeros that mnst be determined. Otherwise the procedure is the
salne.

Example 1311

We want (o find the frequency response of a system with the pole-zero diagram
shown in Figure 13.10. We can find it from the pale-zero diagrara up to a tactor
K.

Q| K-|X(e"h)]
B o] 2 4
1/2x1
T 1.8 ~ 1T
T4l 0Tx15 T
3 1.4
+o = 0.6
3| Tixaz > 0o
ar 0.7
il I el
T H;
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1X(e¥2)]

i

_ L
*_,,_fwg’ “"i‘-—ﬁ.* ————
-5 0 T £2

Figure 13.11: Exact frequency response to (13.28} and the estimate from the pole-zero
dlagratn

Substituting z = 1 into (13.28) gives K = —1. The cstimates are shown in
Figure 13.11 with the exact result for comparison. Zeros lving directly on the unit
circle force the magnitude of the Fourier transform ar this frequency to zero, and
poles lying near to the unit circle increase the resonant peak, The nearer to the
unit eircle that a pole or zero lies, the greater effect it has on the Fourier transforn.
Poles or zeros at the origin of the z-plane have no influence on the magnitude of
the Fourier trapsform, but they do make a lincar contribnution towards the phase.

13.7 Exercises

Exercise 13.1
Evaluate the z-transforms of

a1 [k] = 8k — 3] — Ad[k -- 2] + 6ok — 1) — 48[k] + d[k + 1]
2alk] = e ek - 2], a€eC

e -8 for k] < 10
zalk] = { () olherwise

using the delining equation (13.1).

Fxercise 13.2

Fvalnate the z-transtorms of
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ancl give the region of convergence for cach. Note: sce Examples 13.2 and 13.3.

Esxercise 13.3

2, (4} are fune tions of time:

fl'-i('ﬁ_] — ._»t’} s (r
roft) = PRI [-103(271.?}’_ ) e(t)
Il?:-i(t) = { 2‘1") :am({) dﬂ'“—) (”

x,(t) will he sapted at times ¢ = KT to give the likewise continucus-time signal

Tyalt) = ZL,, |- 3(t — kT).
k=0

a) Sketch 2, (#)

b} Find the Laplace translorm X, (s} of the sampled continuous-time signal
Lo (E).

Note: Determine suitable functions ., {k) and their transforms X, {z).

Exercise 13.4

a) Fiud the z-transforms of the low-pass impulse responses x,,[k].
0.5 for lkl =i

k] = 1 fork=10
0 otherwise
1
xolk] = Z 3k — 44
f!:—l
9
it U‘] == Z {5[}& — )‘J]
ey
ryr  § o si(0.57k)  for [k < 4
alh] = { 0 otherwise

b} Give the spectra F, {#,[k)} and skeich the given sequences and magnitudes
of the spectra.

Exercise 13.5

Prove the following theorems of the z-transforin:

1. using the defining equation {13.1),
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2. deriving them from the corresponding Laplace trausform theorsny
a) shift theorem
b} modulation theorem
¢} the ‘multiplication with & theorem
d) time reversal
Exercise 13.6

Let zik] = dlk — 1] + 26[k] + [k + 1]. Using the modulation Lheorem, caleulate
the z-transform of o, [k} = eT% %2k Tor Qg = 0. 0y = L and ) = 7. Skeich the
corresponding spectra X, ( e-?ﬂ).

Exercise 13.7

Let X{z) be the z-transform of a right-sided discrete signal zik] where for the
poles of X(z), izp.) € 0.5. Determine the z-transform of the signal and give the
region of convergence.

z1 k] ko - xlk)

wolk] =  wlk ~ kgl e[k — kel .

aalk] = (—e)d > z [k

fi

Exercise 13.8

Decide whether the following s-trausforms Lelong to a finite or inlinite series, Give
the region of convergence {or each under the assumption that it is a right-sided
series being dealt with.

Hi(z)= %=1

Hole)= 5 -2
Hy(z) = *};
) =1+ g

Exercizse 13.9

Determine the inverse z-transforms of the following functions:
51
T oz{z+05)

ROC: |z] > 0.5

L ROC: |z = 0.5,



G
Lo
=1

13.7. Exercises

Exercise 13.10

Draw the pole-zero diagrams tor
a) Hol) =2 =1

B Hylz) =27 -1

c} H i) =

O
Al

Exercise 13,11
The pole-zero diagrams for three similar systems are shown. Calculate and sketch
the impulse responses of the systems (to a constant factor). Where do they differ?

system | systern 2 system 3
A imfz) $ im|z) finfz]
b N N
p/ -1 0,5 \ RL{ 4} ?{ e ] RC{ :} # = A{15 \‘ll RL‘.{:]
4 - ; E 3 } te T T L
fos s
5 _ & 93 QI/

Exercise 13.12

For the sequence alk] =

~1

I DLk <y

0 othorwise

a} find the s~transform X(z}

b) find the poles and zeros of X(z)

¢} sketch a pole-zero diagram for v = 3.

r+1<k<2r+1

.ore N



This Page Intentionally Left Blank



14 Discrete-Time LTI-Systems

14.1 Introduction

Now that we have described discrete-time signals in the frequency domain, we can
deal with gystems which have discrete-timne inpat and outpui signals. We eall these
discrete-tume systems. They have alveady been briefly mentioned in Chapter 1.2.5,
but were left in favour of continuous systems.

The properties of discrete systems kave strong parallels with confinuous sys-
tems. In fact, we can deal with them more quickly by building the corresponding
properiies Lo continuous systems. This is in accordance with our general goal, as
we want to avoid technical realisations of discrete and continuons systems and deal
only with the fundamental relationships.

14.2 Linearity and Time-Invariance

The most general form of a discrete systom with one input and one output is
shown in Figure 14.1. The system 8 processes the input scries z[k] and produces
the outpul series ylk]. The properties of the discrete system S will be restricted
so that it is an LTI-system. We can then fall back or Definitions 3 to 6 from
Chapter 1, as their general formulation applies to both comiinuous and discrete
Syslems.

zk)] — 8 e ylk] = S{zlk]}

Figure 14.1; Discrete LTT-System

Specialising the superposition principle and time-invariance to the system de-
seribed by Figure 14.1 yields the following:

e A discrete system S is lénear, if the superposition priuciple holds for the
response to any two jnput signals o) [k] and 2,[k].

S{Az1{k) + Baalk)} = A S{z[k]} + B S{zalk]}. (14.1)
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As in (1.3), A and B can be any complex constants.
* A discrete systewn S is tame-mverent if for the reaction #ik] to any input
sigual zfk]
ylk] = S{alk]} (142)
the relationship
ylk -kl = S{alk~ ]}, VreZ (14.3)

holds. M the index & is iustead of time, a discrete position variable, for
example, the system § is called shift-invorent. In any cage, the shill is only
defined for integer valued of x, as the difference k — x must give an integer
index of the series x[k].

14.3 Linear Difference Equations with
Constant Coefficients

14.3.1 Difference Equations and Differential Equations

As linear differential equations with constant coeflicients correspond to continu-
ous LT T-systems, linear difference cquations with constant coefficients characterize
diserete LTI-systems. Examples for such difference equations are

v+ Solb—1] = ali (11.4)
y[k:]—%y{krullJr%y[ku?] - x[k]+1r{k—1]—%x[k-2}. (145)

The general form of an Nth-order linear difference equation with constant coeffi-
cients dy, by, is

N

N
Z anylk — ) = Z bpx[k —n]. (14.6)
n={

=0

In contrast to the corresponding form (2.3} of differential equation, a shift of the
time index & by n values occurs in place of the nth derivatives.

For a given nput signal z[k], the difference equation (14.6) has an infinite
number of solutions y[k], that can in general be formed from & independent linear
compoenents, An unambigueus solution can be obtained with N conditions, given
by initial values instead of derivatives, for example, ¢{0], yi—1], yI-2l, .. . y[-N+
il.

| Using the superposition principle (14.1) and the cendition for time-
invariance {14.3), it can be confirmed that a system described by the difference
equation {14.6) is a discrete LTT-system.
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14.3.2 Solving Linear Difference Equations

The are two possible methods for solving the linear difference equation {14.6):
numerical and analytical.

14.3.2.1 Numerical Solution
By rearranging the difference equation {14.6), we obtain the expression

N N
yik! = 1 Z baafh —n) — Z anyth —n]| , (14.7)
2y

7=t} n=1

that can be numerically evalualed, beginning with £ = 1,2,3,.... For k =1, the
calculation of the initial conditions starts with the known input signal z[k] and
with the initial values y{0], y{~1], ..., y[~N +1]. For & > 1, the values already
known, y[k — 1], y[k - 2], ..., are entered into the right-hand side. This method
has practical importance, as the right gide of (14.7) can be calenlated quickly and
very accurabely using a digital compuier. A delay by n can be implemented by
shifting the location of the values in the memory of the computer.

14.3.2.2 Analytical Solution

There is also an analytical solution which is possibie in much the same way as
with the linear differential equation. The fundamental principle is again splitting
the sclution intc an exlernal and internal part

[k} = Yot [b] + gini [K] - (14.8)

Here, y{kl reperesents the solution of the difference equation under the initial
conditions, yex[k| deseribes the response to an inpul signal if the system is at
rest and i [A] describes the homogenous solution of the initial coudition problem
without an input signal. The effect of the combined terms is shown in Figure 14.2,
which corresponds te Figure 7.1 for continuous initial value problems. The external
and internal terms ean be calculated in a similar way using the z-transferm, just
as the Laplace transform was used with continuous systems (see Chapter 7).

14.4 Characteristic Sequences and System Func-
tions of Discrete LTI-Systems

14.4.1 Eigensequences

In Chapter 13.1.1 and 13.5 we mentioned that the inverse z-lvansfoviean be inter-
preted as superimposing elgensequences of discrete LT T-systems. 'Thé properties of
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initial states

effect
on output
discrete Yinelk]
——— LT b -
x[k] system Yexil k] o/ y[&}

Figure 14.2: Combination of the external and internal terms to forn the solution of a
differential equation

eigensequences are completely analoguous to those of eigenfunctions of continuous
ET1-systems in accordance with Definition 10 in Chapter 3.2. An eigenseries at the
input of a discrete LTI-system causes a response at the output that corresponds to
the inpul series with & constant factor (see Figure 14.3). The prool that eigenseries
of discrete LTT-systems are exponential series of the form eJk] = 2" will be carried
out exactly as for the eigentunctions in Chapter 3.2.2. We consider a genoral LTT-

ef] —a{ 8 |—» X-¢lE]

Figure 14.3: System § is excited by the eigenseries elk]

system (Figure 14.1) and only require that it is linear (14.1} and time-invariant
(14.2), {14.3). The input signal should be an exponential series x{k] = 2. We
want to find the corresponding cutput signal.

ylk] = S{zF}. (14.9)

From the conditions of time-invariance and linearity:
ylk ~ 8] = S{x[k — K} = S{2" 7"} S "} = 2 yik] . {14.10)
These difference cquations are only fulfilled at the same time for any «, if y[&] s

a weighted exponential series
ylk} = Az". (14.11}

elkj=2%, z€C (14.12)
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2 L Tlsystem — H(z)2*

Figure 14.4: z* arc eigenseries of discrete LTT-systems, H(z} is Lhe eigenvalue

is an eigenseries of an LTT-system. The corresponding eigenvalues A depend in
general on 2. As with continuous systems we call X = H{z) the system functon
or transfer function of a discrete LT1-systemn (see Figure 14.4}.

Like the system function for continuous systems, the system function for dis-
crete systems H(z) has a region of convergence which contains only part of the
complex plape. Exciting ihe system with a complex exponential sequence outside
the region of convergence does not lead to an oulput series with finite amplitude.
As with continuous systems, the region of convergence of H(z) is often not explic-
itly given,

Finally, it should also be mentioned that a unilateral exponensial series

alk] = 2 - g[k] (14.13)

is not an cigensequence of a discrete system.

14.4.2 System Function

The system function H(z) can describe the system response to all input signals
wlk], and not just eigensequences efk] = z*. The relationship between a general
discrete input sequence zfk] and an exponential sequence is represented by the
z-transform, which is given here as the inverse transform of the input signal

Vof L dz .
and the outpul signal
1 A =
= 57 j{? (2)z . (14.13)

of an LTL-system. The output sequence yik] is obtained as the system response to
x[k]

L, dz
yik] = S{xfH]} gf X282 (14.16)
Inserting in §{z*} = H(2)z" (see Flgure 14.4) and equating with (14.15) yields

the relationship between the z-transforms of the input and output signais (see
Figure £4.3)

! Y(2) = H()X(2). (14.17)
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X(z) — H(z) —— Y(z)=H{z}X(z)

Figure 14.5: System funetion H(z) of a discrete LTT-system

The system function H(z) (with its region of convergence) is a complete de-
scription of the inpui outpui. behaviour of a discrete LTI-system. It makes it
possible to give the output sequence y[k] for any given input sequence x[k].

14.4.3 Finding System Functions from
Difference Equations

A gystem funetion can easily be found from a difference equation using the shifs
theorem of the z-transform (see Table 13.1), We will demonstrate the procedure
with a few examples,

Example 14.1

A discrete delay circuit delays the input signal. Its "difference equation is
ylk] = afk — 1]. (14.18)
Using the s-transtorm and its shift theorem (Table 13.1 ) with x = 1 yields
¥(2) = Z{ulkl} = Elalk - 1]} = 2 X (). (14.19)

A comparison with {14.17) gives the system function of the discrete delay circuit
(see Tigure 141.6}

H(zy=27",

e — olk) = ok - 1]
X(2) ¢ Y(2) = tX(2)

Figure 14.6: System function of the discrete delay circuit
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Example 14.2

We will find the systern function of a diserete ETT-system described by the
difference equation

ulk) — Folk =1+ gulk ~ 2} = ali] + zlk — 1] - Salk -, (14.20)

3

Using the z-transform with its shift theorem
Y(z) - -Y(LV‘ + 1’( )2t = X))+ X(2)2 7t - S X(2)27 %, (1421

From the difference equations, an algebraic equation is formed so that X(2) and
Y {2) can be factorized

1

Y(z)[ - =z —1+3

} = X{(z) [1 +z70 - %z_z] : (14.22)

Sorting the terms yields the system function

Y{z) 1+z71-422 ?4z-1
H 2] = —_ ‘)‘_.._._—: ———-—H—-———Z . |4-23
2 X(z) 1-Lz14322 2-olzid ( )

The systern function of a general LTI-system of Nih-degree described by Lhe
difference equation (14.6) can be ohtained in the same way as the last example,
The z-transtorin and shiff theorem yield from {14.6},

N N
V() Ytz = X(2) Y bz (14.24)

== rre=(}

and then the system {unction

b-,n_z -

H(z) = E ; (14.25)

o2

£

can be found.

With the two examples and with (14.24) und (14.25) we can make some state-
ments with which we are alveady familiar in principle from dealing with continuous
systemis and the Laplace transform:
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s The z-transforin converts a linear difference equation with constani coetfi-
clenls into an algebraic equation. The algebraic equation can be solved or
investigated more casily than the difference equation.

o The system function for a difference equation of Guite order is a rational
fraction function and can be described by poles and zeros. The frequency

response of the system can be estimated easily using the methods described
in Chapter 13.6.

¢ When the system [unction H{z) is derived from the difference equation, its
region ol convergence can only be given if additional properties like causality
or stability are known. For causal systems the region of convergence lics
outside a circle about the origin, through the most distant pole.

14.5 Block Diagrams and State-Space

Like continuous svstetus, discrete systems can be represented by block diagrams.
The paraltels between the two kinds of system are particularly noticeable here us
instead of an integrator in continuous systems, there is a delay in discrete systems.
In the frequency-domain it means that a block with the system function H(s) =
s~% (integrator) corresponds to a block with Lhe system function H(z) = 27
{delay circuit).

14.5.1 Direct Form 1

The direct form I of a disercte LTI-system as in Figure 14.7 corresponds exactly to
the block diagram for continuous sytems in Figure 2.1, The only differences are the
delay circnits in place of integrators. Comparison with the system: function {14.25)
confirms that the block diagram in Figure 14.7 realises a discrete LTT-system with
the difference equation (14.6).

14.5.2 Direct Form Il

The block diagram in Tigure 14.7 can be analysed as two LTT-systems connected
in series. The order in which they are connected can be reversed (compare Fig-
ure 2.2), but the result. is the same, shown in Figure 14.8. As in Chapter 2.2, it is
also striking that both vertical series of delays run in parallel and can be replaced
by a single series. The result in Figure 14.9 again corresponds to the structure of
direct form II for the continuous system shown in Figure 2.3, Direct form III (see
Figure 2.5) can be constructed in a similiar way for diserete systeins.
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Figwe 14.7: Direct form T of a discrete LFl-system

14.5.3 State-Space Description for Discrete LTI-Systems

If a block diagram of an LTL-gystem is given, a state-space representation of the
form:

zlk + 1)

ylk]

Az{k] + Buxk] (14.26)
Czlk] + Dalk]. (14.27)

can be formulated.

As state vector z[] the values stored in the delay circuits are chosen. We
call (14.26) the gystem equation, whieh describes changes in the internal states
depending on the current state sjA] and the input series x{k]. With the form (14.26)
and (14.27) it is easy to characterise systems with multiple inputs and outputs
(Figure 14.10).

Using the z-transform on the state-space description (14.26),(14.27) we obtain:

2Z(x) = AZ{z)+BX(z) (14.28)
Y(z) = CZ(z)+DX(z). (14.29)

These equations are identical to the state-space description of a continuous-time
systemn in the Laplace~damain except that the complex variable s has in this case
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yl&l

Figure 14.8: Forming direct form II from direct form 1

been replaced by the complex variable z. We can therefore also use many of the
techuniques developed for continuous systems directly on discrete systems. This in-
cludes the relationships between the difference /differential cquation, block diagram
and state-space descriptions (Chapter 2.4), squivalent state-space representations
{(Chapter 2.3) and controllability and observability (Chapter 2.6}, Figure 14.10
shows the block diagram of the state-space- description for a discrete LTI-system
with state equations {(14.26), (14.27), and (14.28), (14.29). Be earefnl nat to con-
fuse the state vector in the time-domain zk] with the frequency variable z of the
z-transform!

I the case of initial condition problems described by difference equalions, the
state-space description (14.28) and (14.27) can be extended, where the system
is offset to a suitable time ky in a suitable initial state zjky! so that the given
initial conditions are fullilled. This can be achieved using a superimposed hnpulse
zod'k — ko], with which the state-space description is

z[k + 1]

yl&}

Azjk] + Ba[k] + zod[k + 1 — kol (14.30)
Czlk] + D[k}

Il

I

If the initial state is given at ke = +1, the s-transform of the state-space deserip-
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Figure 14.9: Direct form IT of a discrete LTT-system

o1 D
z[k~1] z[ k]
— B 1TE—=—) C |
x[k] yl4]
A k

Figure 14.10: Block diagram of the state-space description for a discrete LTT-system

tion is
2E8(zY—zp = AZ{z)+BX(z) (14.31)
Y{z} = CZ{z)+DX(z),

which corresponds exactly to the initial value problem for continuous systems in
the Laplace-domain (7.61), (7.62). The initial state Zg can be easily reached if
the initial conditions are given: w[1], y[0}, y[-1], ..., y[~N + 2]. Starting from
(7.64) — (7.66), discrete initial value problems can be solved in the usual way., The
procedure will be demonstrated with an example,

Example 14.3
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The sccond-order discrete systera in Figure 14.11 is described by the following
matrices of the state-space description:

0 < 1
A:[la}, B:[o]' C=[0 %], D=1.

We calculate the response of the system for zik] = 0, and the initial values [0}
and y[l|, using the formula {compare (7.64} - (7.66)):

1
Y(z) = G(z)zy, G)=CGE-A)!l= zzi L)

The connection between the given initial vatues y[0] and (1] and the state vector
%y = 2[t], which causes the same output signal, can be read from Figure 14.11

al] =y0], =] =4l].

From that we obtain

1
Y{2)= . L (9]0] + z4y[1)) {14.32)

and splitting into pariial fractions

Y{z)= %Z"l [(ylﬂl +2y[1]) —5 = (4[0] - 291} = 11 ‘

z+§

-

Finally, the output signal is found by inverse z-transformation

yikl = 90 [@)}" (-;)k] el ~1) +
y[llé [(%)H + (——%)k_l] elk —1].

As we had taken the initial state at ky == 1, the calculated output signal also starts
at k= 1, and delivers the expected value y[l]. This can be confirtned by insertion
into the given difference equation.

|

14.6 Discrete Convolution and Impulse Response

In Chapter 8§ we introduced the Impulse response as a second important charac-
teristic for continuous systems, in addition to the system function. Iis importance
can be expressed in three significant properties:



14.6. Diserete Convolution and Impulse Response 351

Ak () ! - yIK]
I

21
| 21tk

Z_l
Zz[k}

b

i
4

Figure 11.11: Block diagram of the discrete system in Example 14.3

» The impulse response of a system is ils reaction 1o a pulse-shaped input.

¢ ‘The impulse response is ohtained by inverse transforming the system func-
tion.

+ The ocutput signal of a system is obtained in the time-domain by convolution
of the input signal and the impulse response.

Tle derivation of these properties was nol sitnple, as the pulse-shaped input needed
to generale an impulse respense is not an ordinary function. The price for the
elegance of this system description was generalising functions to distributions.
The delta impluse introduced in Chapter 8.3 cannot be characterised simply by its
values, only by its effects on other funcltions, in particular, the sclective property.

This system description based on the impulse response can be transferred to
discrete systems, We will see that for a discrete gystem, the impulse response
has the same fundamental properties as for a continmons system. In one point
the description of discrete systems hecomes a lot simpler: the pulse-shaped input
signal required to generate the impulse response is now a very simple sequence. It
i$ the unit impulse intreduced in Chapter12.2.1, which is a sequence of zeros and &
single one. We can deal with these values without the use of generalised functions.

14.6.1 Calculation of the System Response Using
Discrete Convolution

To imtroduce the impulse response of a discrete system we consider Figure 14.12.
It shows a discrete system with input signal xfk] and ontput signal y[kl. The
response Alk] to a discrete unit impulse (see Chapter 12.2.1) will be called the
mnpulse response of a discrete systeni,
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The impulse response makes it possible to calculate e system response in
the time-domain for discrete ET1-systems. As an example we examine the input
sequence x[k] in Figure 14.12 with three non-zero values. We can split it into three
individual sequences with one non-zero value in each, and then these sequences can
be interpreted as a unit impulse shified by & = 0,1, 2. Bach impulse is weighted by
the value of the function z{k], so #[k|dik — ] for £ = 0,1,2. At the output of the
LTT-system each of the shifted and weighted impulses cause a likewise shifted and
weighted impulse response, zik]h{k—x| for k = 0,1,2. Because lhe system is linear,
the responses to the individual sequences can be added to give the response to the

complete input signal z{&], so ylk] = Zi:O wlxihk — &}, These considerations

4] v | M4

LY Hk]

A 1= 50 Hkox)
¢ 1 23

{07 8[4] A£0] k]
0t 23

A 1] 8 k11 A 1] Hk-1]
01 2 3

2] 8[k~2} 1[2) Hk-2]

P

0123

Figure 14.12: Discrete convolution

can also be extended to any inpul sequence z[k] with more than three values.
The swumumation is performed in the general case from —oo 1o co. The resulting
expression for y{k] is the same as for convolution if the integral is replaced by a
summation sign. We therefore refer to this as discrete convolution, which will be
dencted with =

ylk] = alkl=hlh] = > zlx]hlk -+l
wE (14.33)
= hk]szlk] = D hixlzlk -4

Rmm— o

H

The substitution n = k — x quickly shows that discrete convolution is also com-
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mutative.

14.6.2 Convolution Theorem of the z-Transform

In the description of the system from Figure 14,12, the relationship between the
impulse response hlk] and the system function Jf(z) remains undefined. To find
it, we start with the discrete convolution in (14.33) and use the z-transform on
both sides:

e o)

vizy= Y yl Z Z L Pat bt (14.34)

hm—nc k= o Km0

On the right-hand side we have added in the exponent of z another zero in the
Form ol k — & = 0. Interchanging the sums and rearranging terms yields

=)

Yz} = 3 ;(:M::_’“‘ Z hik — w]z— =)

K- 0o

(14.35)

|

e

S alls 3 ol
H= O PRI
In the second row the substitulion n = &k — & has been used. Both sums are inde-
pendent of each other and represent the z-transforms of z[k] and hl&] respectively.
Frinn this we read:

¢ Using z-translormation, discrete convolution becomes a multiplication of the
corresponding z-transforms.

s The ztransform of the impulse response of a diserete systom is the system
function.

The first statenient identifies the convolution theorem of the z-transform, which
corresponds to the convolution theorem of the Laplace transform:

t;[ (| = x[k] * hlk] o—e YV{(2) = X(z) H(2) ROC{y} 2 ROC{z} NnROC{L}.
) (14.36)
The region of convergence of Y{z) is at least the intersection between the ROCs
of X{z} and H{z). That means that Y{(z) definitely converges where both X(z)
and I1(z) also converge. Y'(z) also converges, however, on poles of H(z) if they
arc at the same time zeros of X (z) {and vice versa). The region of convergence of
¥Y(z) can therefore be greater than the intersection,
The second statement gives the relationship between the impulse response and
systern tunction:

H(z) = Z{hK)). (14.37)
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As well as the system function is the impulse respouse a complete description
of a discrete LTT-system’s input-output behaviour. The system vesponse to any
input series can be calculated using convolution with the impulse response, From
(14.37), the region of convergence of the system function H{z) can also be found,
which it Section 14.4 we assumed was already known.

14.6.3 Systems with Impulse Responses of Finite and Infi-
nite Length

A significant distingnishing feature of diserete systemns is the length of the impulse
response. Depending on the structure of the system, it can have a finite or infinite

number of non-zere values, We will consider two exarnples for discrete first-order
svstems.

Example 14.4
Figure 14.13 shows the structure of a system with system function
H{zy=1+bz"".
It consists of a direct path from the input to the outpul and a parallel path with

a delay and a multiplication. The response to an impulse therefore consists of two
values and is of finite length,

e impulse response
1% b
| B U
k

Figure 14.13: System with an impulse respense of finite length

A software realisation of this system in the programming langnage MATLAB
could consist, for example, of the following commands:

by =[100000]; % input gignal: unit impulse

b = (),B; % multiplier

x_o0ld = O; % memory {initially empty)

¥ = zeros(size(x)}; % output signal (not yet calculated)

for k=1:6, % loop for 6 steps
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y(k) = x(k) + x_old#b; % current value of the output gignal
x_old = x(k); % delaying of the input signal
end

The delay is formed by saving the current input value in the variable x_old.

Example 14.5

Figure 14.14 shows the structure of a system with system function

1 z
H{s):l =

—az=l  z—a’

H is made up of a dircct path and a feedback loop from the output to the input
with a delay and a mulliplication. The response to an bnpulse decays steadily
for ) < |e} < 1, but never quite reaches zero. 'U'he fmpulse response i therefore
infinitely long.

impuise rasponse

o _faf fork=0
- ATkl = { 0 elsewhere

a?
=¢IITTTQOQ

Figure 14.14: System with an impulse response of infinite length

The corresponding program steps in MATLAB are

x =[100000]; % input signal: unit impulse

a = 0.8; % multiplier

y_old = 0; % memory (initially smpty)

¥ = zeros(gize(x)); % output sigmal (mot yet calculated)

for k=1:6, % icop for € steps
y[k] = x{k} + y_.old*a; % current value of the output signal
y_old = y[k]; % delaying of the output signal

end

Here the current output signal is saved in the variable y.old, so thab the delay
cau be implemented.
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For @ = 1 this system represents an accumulator that sums all incoming input
values. The impulse response of the accumulator is the discrete unit step (see
Figure 14.14 for a = 1). We calculated the F.-transform of the discrete unit step
in Chapter 12.3.3.3 and the corresponding z-transform in Example 13.2.

.;
The following terms will be used:

e Systems with finite impulse responses are also called non-recurswe or FIR-
systems (FIR ~ Finite Impulse Response).

e Systems with infinite impulse response are also called recursive or 1IR-
systems (IIR - Infinite Impulse Response).

14.6.4 Discrete Convolution

The great practical importance of discrete convolution comes about because the

expression
o ¢}

y[k] = x[k] = h[k] = Z x[k] hik — K] (14.38)
R=—00
can be implemented immediately as a computer program. In the usual program-
ming languages, two FOR-loops are required to calculate (14.38), where the outer
loop runs via the index & and the inner loop via the index . There are, however,
processors with a special architecture {digital signal processors), which can carry
out the summation with % in (14.38) as the scalar product of two vectors very
quickly. Even for the preparation and testing of such programs it is vital to have
mastered discrete convolution on paper. We will therefore deal with it in even
greater detail than the calculation of the convolution integral in Chapter 8.4.3.
To begin with we show a method similar to the convolution integral in Chap-
ter 8.4.3:

1. Draw z[«] and h[x] with respect to &.
2. Reverse h[x]: hlk] — h|—x].
3. Shift A[~k] by k positions to the right: h[—k] — hlk — x].

4. Multiplication of x[k] with h[k — x] and summation of the product for all
values of  yields one value of y[k].

5. Repeat steps 3 and 4 for all values of k.

Because of the commutativity of convolution, the steps can also be carried out
if @[k] and hlk] swap places. The calculation of discrete convolution using these
steps will be demonstrated in some examples.



14.6. Discrete Convolution and Impulse Response 357

Example 14.8

We calculate the response of the recursive syster from Figure 14.14 with the
impulse response
hik] = elkle® O<a<i1 {14.39)

to an tnput signal of the form

- 1 for0<k<K -1 .
ik = { 0 otherwise {14.40)
as a result of the convolution
y[k] = z[k] = hk]. (14.41)

The impulse response A{k] and the input sigual z[k] are shown in Figure 14.15.

hik]
i
*
AR
| ¥
-G l I ?9?$?~ -
0 K k
x[k]
1
1] K k

Figure 14.15: Input signal #[k] and impulse response Alk]

By reversing and shifting the impulse response, the sequence hlk — «] is ob-
tained, as shown in Fig 1416 for k= -2 and k = 6.

For the mulliplication of ©{x] and &k — &j, and the stunmation with index &
there are three cases to consider:

o for k < 0 hlk — x| and z[x} do nol overlap (see Figure 14.16 bottom) and the
product is zero for all k, so

yik] = 0. (14.42)
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K

Figure 14.16: Mirvorred impulsc response does not overlap the input signal x[k] for & < 0

s For 0 < & < K, hlk—x] and 2[] begin to overlap, so the product z[x]A[k —x)
for 0 < x < k is non-zero (see Figure 14.17). The sunmation yields

k k & —k—1 Rl
1N ken ok e @ {1l —a ) 1—-ua .
ylk] = ) a® =g E (o hr = T T T o (14.43)

= #=={)

e For A < k all K values of the input signal x{k] ovorlap with the reversed
and shifted impulse Tesponse Alk - 1] (see Figure 14,18). Tt is summed over
0 <k < K and yields

K1 k —K ktlf,—I
o ken _ 000 —a™")  a™ e — 1)
ylk] = Ezu @t = ey [ . (14.44)
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overiap

Figure 14.17: For 0 < k < K the two functions begin to overlap

Figure 14.18: Overlap for K < %

The smn of the values of ylk] [rom all three component regions is represented in
Figure 14.19.

Figure 14.19: End result for yikl in Example 14.6

Example 14.7
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The convolution of a series x[k| with a shifted and scaled unit impulse results
in a shifted and scaled variant of z{kj:

x[k] * Adlk — ko] = Axlk — k). (14.45)
Figure 14.20 shows an example for A = —2 and kg = 3.
1 1 1
% =
k k k
-20[k-3}

Figure 14.20: The given servies is shifted by 3 and scaled by a lactor —2

If hik} is only a short sequence {e.g. as impulse response of & non-recursive
filter}, the steps in Figure 14.12 can be carried out to caleulate the convolution
product [k « z{k]:

1. Splitting A[#] into shifted and scaled unit impulses &{x]d[k — &].

2. Superimposing the compeonent canvolution products that are given by the
convolution of x[&] with the shifted, scaled unit impulses hix|dk — &l

Example 14.8

Figure 14.22 shows the use of these stepy on the input signal x[k; shown i
Figure 14.21 and the shott impulse response hlk]. Convolution of x{k] with each
partial sequence (left)

helk] = hlkl6lk — &), w=0,1,2
gives the partial product (right)
yelk) = bslalk — k), k=0,1,2

whose sum over &£ = 0, 1,2 yields the complete cutput signal y[k] (boitom).
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[k
Jlmm_
k
Jh[k]
1
k

Figure 14.21: Input signal z[k! and impulse response hik]

hrlk) yolk}
1 *x[ka1“[|||||
3
5 1k I}'t{k]
2137 * x[k] =
.._.ﬂ....,._k,. -

holk]

] yalkl
13 Ik
k

o rk]

k

11

Figure 14.22: Calculating the convolution product of z[4] with the series P [&]

Convolution of two signals of finite duralion results in another finite signal.
From Figure 14.23 it can be taken that the first non-zero value of the result y[k]
lies ai the index which corresponds to the sum of the indices of the first values of
2[k] and hlk]. For the last value of yk] the equivalent I8 true. The duration of
y[k] can be obtained from the durations of z|k] and A{k] with

L(luz'ai,ion{y[k:}} = duration{z{4]} + dwration{h[k]} —1. {14.46)
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xfk] ¥

| VIK] '

—— i — e ——

=

sl
-—
-~
e
i
———— e ————
L ]

ka1 +kay koi+ke

Figure 14.23: Convohition of two Guite signals ={k] and hlk)

14.7 Exercises
Exercise 14.1
Check the linearity and time-invarianee of the following systems y[k} = S{x[k]}:
a) ylk) = axlk]
b} ylk] = w{k — 5§
¢) ylk] = a + x[k]
d) ylk] = of [k
e) y[kl = wlk] — «lk — 1]

k
£) ik = > x{u)
=0
k
D= 3
o —oo

h) ylk] = e ylk — 1 + z{k]

i) k] = ol
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i) ulk] =¥

Exercise 14.2

Are the lollowing systems shilt-invariant? }ustify your answer.

a} Downsampier by a factor of 2:

b} Upsampler by a factor of 2:

¢) Downsampler followed by & upsampler:

x[k] - * 2

ylk) = «[2 k]

- { 7

¢

k even
k odd

¥

42

= 1k}

Investigatle especially a delay by one step and by two steps.

Exercise 14.3

A systemn is given by the difference equation

ylkl = xlk) - 2ylk — 1] — ylk — 2].

Determine the reaction to a} x[k] = §[k] and b) z[k] = &lk] numericaly for k > —1.

Exercise 14.4

Solve the following discrete mitial value problem numerically for & € {0; 5):

difference equation:

initiat conditions:

excitation:

Exercise 14.5

Compute nuinerically the output signal of the following system for & € [0;3]. Give
Yext [k}, #im K] and the initial condition y[0], if the output of the delay clement has
the initial state z{0] = 2 and zik] = ¢[k] .

k] -4

[ k+1}

=1

i

05

—- [ k]
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Exercise 14.6

a) Transtorm the block diagram from Exercise 14.5 into direct form 1, TI and
ITL. Determine for each case the initial states of the delay elements in order
to fulfill the initial conditions. For which form is the initial state unigue?

b} Derive a difference equation from the block diagram from exercise 14.5 and
compare the coefficients with a).

Exercise 14.7

Give the direct forms 1T and 11T for the system from Exercise 14.4. Determine the
initial state for each so that the initial conditions are fulfilled.

Exercise 14.8
1 1
A system is given by the difference equation yfk] — §y[k -~ 1]+ Ey{fc — 2] = 21k].
| N
Calculate the response to zfk] = ( 5) ¢[k| with the inverse z-transform.
Exercise 14.9

a) Calculate the impulse response by [k] of the discrete system

2
az
H(z) = 22~ 20,5

I2] = e.

Are we dealing with an FIR or an [IR system (Justification)?

b) H;(2) will he approximated with an FIR systers Ho{z}. The impuise re-
sponses of hi[k] and hg[k] should agree for k < 5. Find Hy(z) and produce
a block diagram realisation.
Fxercise 14.10
Solve the initial value problem in Exercise 14.5 anatytically using the z-transform:
yik] — 0.5ylk — 1} = 2wlk] + 0.5x[k — 1}
ylo) =3
xik] = e[k
-8)- Calculate g lk] o~ @ Yoru(2)} = H{z) - X(2).

b} Caloulate pw [k]. Start with Y {2} =

, where 2, is the pole of H(z).
P

Then determine A4 in the time-domain using the initial conditions. Note: see
Chapter 7.3.3.
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¢) Give glk]l. Compare the results with Exercise 14.5.

Exercise 14.11

Solve the initial value problem from: Exercise 14.4 analytically with the z-
transformm. Calculate the external and internal terms as in Exercise 14.10. Verify
the result with Exercise 14.4.

Exercise 14.12

Using the convolution swin (14.33), calculate c[k] = alk] = b[k], for
a) ofk] = efk] —elk —3];  blk] = 8[k] + 28]k — 1] - 8[k — 2]
b) alk] = 0.8%c[k}; b[k] = 6k + 20 + 0.86[k + 1], with sketches.

Exercise 14.13
Sketch the convolution product ylk] = x[k] x Rik):

GD x[k} MK&]
- 1 + I R
~— —H‘—T—L——Q—O—O—O—~

‘123 k 1 2 3 4 k

Exercise 14.14

An input and output signal for a FIR system are given. Determine its impulse
response using the idea of discrete convolution.
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15 Causality and the Hilbert
Transform

Our examination of systems has so far given little thought to whether or not they
can really be implemented. Although in some of the examples we started from an
implementation {¢.g., an electrical network), and found system descriptions like
the impulse response or transfor function, we have not yet investigated the reverse:
implementation of a given system function. We will correet this in this chapter
and the next. In accordance with our stated goals at the start of the book, we
will not be concerned with implementations using & specific technology. Instead,
we will be looking for general criteria that have to be fulfilled for implementation
to be possible. These criteria can be simplified info two concepts: causality and
stability. In this chapter we will deal with questions connected to the causality of
a gystem. The problem of system stability will be dealt with in the next chapter.

Cansality in general signifies a causal relationship between (wo or more pro-
cesses, for example, between the input and output of a system. In the language of
signals and systems this means more than just a logical connection (if input, then
output}, it also means that an eveni. cannot happen before it has been coused by
another {first input, then output).

In this chapter we will be learning a simple titne-domain characterisation using
the impulse response. Ifs extension Lo the frequency-domain then leads to the idea
of the Hilbert iranstorm. These new toels can also be useful when the time and
[requency-domaing are exchanged. The so-called analytical signal follows from this
uge of the duality principle.

The examination of cansality is closely related for continuous and discrete-time
systems, so we will be dealing with both kinds of systemn in parallel.

15.1 Causal Systems

We will be introducing the concept of causality in steps, beginning with systems in
general and specialising at first into linear systems and then finally LT systems.
15.1.1 General Systems

First of all we wiil be considering the general contionons systemn from Figure 15.1,
which has no special properties that we can use, A caysal relationship between the
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input and output signal exists, if two input signals x,{#) and r4(t) are the same
up to time £, then they will give rise to Lhe same output signals v (£) and yo(t):

1 {t) = z9(t) for t<tiy = y(t) = yolt) for t<tg. (15.1)

We could alse say that if two input signals z,{t) and x2(t) are not different up to
a tihme point ig, the output signals may not differ until this time point is reached.
As neither linearity nor time-invariance are pre-conditions, the condition (15.1)

() causal ¥()
DO A—— continuous e
systemn J

[Migure 15.1: Definition of cansality for continuous systeins

must be fulfilled {or all possible pairs of input signals z, (¢} and x.(¢) and for all
time poinis #.

For discrete systems, Yigure 15.2 holds the corresponding condition for the
discrete point in fime &g

:I.“I[k‘! = .’1;‘2[kl for k <kg == 73] [!'C] = y;;[kl for k <k (152)

& causal Ak
_[_]___,- discrete ——}[-}-
system

Figure 15.2: Definition of cansality for discrete systems

15.1.2 Linear Systems

With linear systems, the difference x{t) = ={(#) — 22(f) of the input signals
froms {15.1) corresponds to the difference y(t) = y1{t) —y2(t) of the output signals.
The condition for causality is thus more simply given by

x(8) =0 fort <t B yt) =0 fort <ty. (15.3)

A linear system is causal if an input signal x(¢) that is zero until time oy causes
an output signal ¥(£), that is also zero until time ty. This condition must be true
for gll time points 9. The corresponding causality condition for linear discrete
systems is sivaply

2lkl =0 fork<ky =>  ylk]l=0 fork<ke. (15.4)
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15.1.3 LTI-Systems

LTT-systems are Lime-mvariant as well as being linear, and so the conditions (15.3)
and {15.4) only need to be formwlated for one point in time, for example, &y = 0
or ky = 0, obtaining for continous and discrete systems:

xty=0 fort<0 = y(i)=0 fort <0 (15.5)
k=0 fork <0 = ylk] =0 for k< 0. {15.6)

With help from the convelution tclationships (8.39) and (14.33),

o) = R xalt) = / h(e)zlt — t)de (15.7)
ylk] = hlk}*xzlk] = S hlx)xlk — K] {15.8)

we can express the conditions (15.5) and (15.8) significantly more concisely using
the impulse response.
For continuous systems it follows from (15.7) with (¢} = 0 for £ < 0 that

y(t) = f hi{t)a(t — 0)de. {15.9)

The eausality condition y{#) = 0 for ¢ < 0 is then fulfilled when the impulse
response h(t} disappears for ¢ < 0:

W) =0 for t<O. (15.10)
In the same way, for discrete systems it follows from (15.8} that
hlk] =0 for k< 0. (15.11)

Figures 8.18 and 14.16 to 14,18 show calculations of convolution with the impulse
response of causal systerns (continuous and discrete}. We have already learnt from
these examples that the convolution result is nou-zero only for times later than
t, = tar + tu2, where £,1 and £,2 indicate the beginning of the signals to be
convoluted (see Figures 8,30 and 14.23). In the case investigated here, t, = f4; =
t.2 i zero.

The condition for enusality of LTL-systems can also be expressed concisely in
words:

An ITT-gystem is causal if its impulse response is a right-sidesd
function and it disappears for negative time.
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This statement is equally true for both continuous and diserete systems.

From the propertios of the ROC of the Laplace transform from Chapter 4.5.3
{or the 2-transform from Chapter 13.2), we can derive a general property for
the ROC of the transfer function of a causal LTL-system. Given separately for
continuous and discrete systems:

¢ The transfer function of a continuous cansal LT1-system is the Laplace trans-
for of a right-sided funcition of time. I converges to the right of a vertical
line in the complex s-plane, Le., for Re {4} > ».

* The transfer function of a diserete causal FET-system is the z-transform of a
right-sided series. It converges outside a circle in the complex z-plane, ie.,
for |2] > .

The transfer function of a causal LTT-system can be identified significantly
more precisely than only by the location of the ROC., We will learn about this
property using the spectra of causal signals in the next sections.

15.2 Causal Signals
15.2.1 Time-Domain

We have already seen that the irepulse response of a causal LTI-systern must be
a right-sided signal. The lollowing investigations can be further generalised, if we
extend them to cover all right-sided signals, irrespective of whether the signal is
an impulse reaponse of an ITT-system. For this reason. we have to position the
zero point of the lime axis so that the right-sided signal beging no earlier than at
zero. Because of the close connection with causal systems, right-sided signals that
begin 1o earlier than at ¢+ = 0 or & = 0 are also known as causal signals

Definition 20: Causal Signals

Causal swgnols are swnals thot fulfill the conditions sct out in (15.10) and
(15.11), for the wnpulse responges of confinuons or discrete systems, so

() =0 for t <D arud xk) =0 for k<O0. {15.12)

Example 15,1

The signal x(#) = {2 + 1)e~" is a right-sided signal, but is not causal. By
shifting Lhe gero of the time axis, we can obtain an equivalent signal (¢}, that is
causal: _

ult) =zt — 1) = (e .
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15.2.2 Spectra of Causal Signals

The causality of a signal is a property thal must also be expressed in the spectyum
of a signal. We will be investigating the characteristic properties of the spectrum
of causal signals i the next section. The results will be general for causal signals
and their spectra. As every causal signal can also be an impulse response for
an LTT-system, however, these spectral properties are also valid for the frequency
response ol cansal LTT-systems.

15.2.2,1 Continuous-Time Signals

We will start with the construction of the spectral properties of continuous-time
signals. If a signal A(¢) is eausal and does not contain any Dirae impulse at ¢ = 0,
mwubiplying it with & step funlion =(t) does not change the signal

h{t) = h{t) - (t). (15.13)

Taking the Fourier translorm, and using the multiplication property (9.75), to-
gether with the spectrum of the step fanction {9.92), we obtain

H(jew) = -;;H(jw) N [Tré(w) n _i] . (15.14)

i KLt

We proceed using the seleclivity property of the Delta impulse 8(w)
H('u.:)—lH('w)—l——le('u.l)*i (15.15)
Juw) = 5 3 o 7 T 15.15

and from there it follows immediately that
H{jw) = 2 H(ju) » — . (15.16)
o Jw

This result means first of all that the spectrum of a causal signal is not changed

by convolution with 3%- and division by =. In order to illustrate this hetter, we
split {15.16) into real and imaginary parts:

Re(H(jw)} = —Tm{H(jw)}+ > (15.17)

Im{H (jw)}

—%R»e{H'(jw)} * é : (15.18)

As ]1: is purcly imaginary, it ix the real part of the gpectrum Re{H (jw)} that
determines the imaginary part of the convolution product and vice versa. We can
recognise thal the real and imaginary parts can be transformed into each other by



372 15. Causality and the Hilbert Transform

an operation which is identical apart from its sign. This operation is called the
Halbert transform, and is defined by

XG0} = 1x Gy D=L [T XU, (15.19)

Mo W1

The Hilbert transform consists of a convolution with L— and a division hy 7, and
is also an LTT-gystem, although here it is defined in the frequency-domain, In
cantrast to the Laplace and Fourier transforms ihe Hilbert transform i not a
transformation between the time-domain and frequency-domain, rather it assigns
a function of variables (here frequency) to another function of the same variables,
which is then the Hilbert transform. Caleculating the Hilhert transtorm by evalu-
ating the integral in {15.19) demands some care, as the denominator becomes zero
for n = w. The correct procedure is shown in detail in [19, 20], for example.

With the Hithert transtorin we can concisely formulate the relationship between
the real and imaginary parts of the spectrum of cansal signals:

Re{H(jw)} = H{Im{H(jw)}} (15.20)
Im{H{(jw)} = —-H{Re{lI(3w)}}. (15.21)

We can now reach the conchusion that the spectrum of a causal signal has the
characteristic that its real and imaginary parts can be found from each other by
the Hilberi transform (15.20, 13.21). As the impulse response of a causal system
is a causal function, this is true for the frequency response of causal LT-systems.
Clearly the real and imaginary parts of the frequency response of an LTT-systern,
and likewise the magnitude and phase, cannot be given independently [rom each
othey.

The result derived in (his section can be easily extended to signals k{t) that
contain a delta impulse hod(t) at the origin, which we had initially excluded. We
replace h{tlo—eH{j = w) in (15.13) — (15.18) by (#) — hod{t)o—eH (3w) — hip. In
place of (15.20) and (15.21), this yields

| Re{H{jw)} = Relho}+H{Im{H{jw)}} (15.22)
Im{H{(jw)} = TIm{he}— H{Re{H{yw)}}. (15.23)
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15.2.2.2 Discrete Signals

The case for discrete causal signals is very similar to that which we have just
examined for contimuous signals. We start with a causal discrete signal A{k], that
does not change when muttiplied with the the unit step funetion:

hik] = hik} - =ik]. (15.24)

The spectrum of this signal is obtained with the multiplication property (12.48)
and the spectrum of the nnit step function (12.33)

H(&Y = o (“WC){ ijn-Féﬁi(éi)} 15:20)
and using the selectivity property
H(e?y = ~H( »’9)4— S H(e '“)O——i—._,—(—} (15.26)
Finally it follows
H{e?) = H(c?“)@) (15.27)

— JQ
In order to find a similar relationship between [1.3.17} and (15.18), we have to deal
with the valuc A{0] at & = 0. Using elementary trigonometric equations we write

1 1 1
[Ze® "3 pand (15.28)

Carrying out eyclic convolution &) of H{e?') with the constant s yields the value
R[0], 50 that instead of {15.27), we can use

H(e?) = h0] + H(e"®- 1—~ (15.29)
2aj td.ll
as well. Re-writing as real and imaginary parts gives
Re{H{e!Y)) = Re{h[(}]}+Im{H(rJQ)}Q——~——— (15.30)
27 tan 2 5
Im{H ()} = Im{Al0]} — Re{H (/) }® — (15.31)

Zta

Here again ave the relatiomships between real and imaginary parts that we can
simplify with a suitable definition of the Hilbert transform for periodic spectra.
This is

1" X(e)
H X (M)} = X (e :__/ o K
{X (™)} = X(e )02?”3“@ o t.an(‘%ﬂ)d”' (15.32)
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Tlie Hilbert transform H. is also a linear, time-invariant system. ‘Thus we obtain
the relation between the real and the imaginary part of the spectrum of a causal
discrete signal

Re{H{e)) = Re{n[0)} + H.{Im{H()}} (15.33)
Im{H{(&™)} = Im{h{0]} — H.{Re{H{e™))}. (15.34)

These relationships are very similar to their continnous-time counterparts (15.22,
15.23), and it is also the case that with discrete causal LTI-systems, the real and
imaginary parts (likewise magnitude and phase of the frequency response) cannot
be given independently from each other.

15.3 Signals with a One-Sided Spectrum

The properties of causal signals and sheir spectra can also be extended Lo right-
sided spectra and their corresponding functions of time, using the duality between
the time and frequency-domains. We thus obtain results that are closely related
to those found in Section 15.2. Because of the duality, the time-domain and
frequency-domain are simply interchanged.

We start with a right-sided spectrum that contains no negaiive frequency com-
ponents

H{ju)=0 for w<0 {15.35)

and are interested in the special properties of the time signal A(t) = F~H{H(jw)},
that is limited by the unilateral spectrum. First of all we establisk that H{jw)
does not exhibit conjugated symmetry (compare (9.49)). Then it follows that
h{t)o—eH (jw) is not a real function, but in fact consists of both real and itwaginary
parts. Starting with

H{jw) = H(jw) - £(w) (15.36)

we can proceed in the same way as for equations (15.13) to (15.21), in order to
obtain a dual result like (15.20}, (15.21):

Re{h(t)} = -H{Im{h(t)}} (15.37)
Im{h(t)} H{Re{h(t)}} - {15.38)

This result can also be extended to signals with nen-zero mean having a Dirac
impulse 2x Hyd(ww)e—-oHy in their spectrum

I}

Re{h(t)} = Re{Ho} — H{lm{h(£)}} (15.39)
Im{h{t)} = Im{Ho}+H{Be{h(t)}} {15.40)
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For time signals, the same definition of the Hilbert transform as in (15.19) is true:

H{x()} = -Tl;:r,(t) .

o | —

t—r

:_?1;[ o(0) 4 (15.41)

Here the independent variable is in contrast to (15.19) just called ¢ and not w.
A shorter and significantly clearer way of carrying ont the Hitbert transform by
calculating the convolution integral (15.41) can be obtained by switching to the
frequency-domain. Using the convolution property (9.70) on (15.41) yields

Ha(t)) = F-! {%X(jw)-}'{%}}. (15.42)
The transforin pair (9.39) foltows
H{z()} = F~H {—j X {jw) sign ()} . (15.43)

The Hilbert transform #{¢) of a time signal x() is obtained if a new spectrum is
formed from the spectrum X {jw} by inverting the sign for w < 0 and multiplying
by —j. The function of time £({f) corresponding to this spectrum is the Hilbert
transform of z{f).

This procedure is already well known, if we think of the Hilbert transform
of a time signal as the effect of a system H on the input signal z(t) (Fig 15.3).
The function 1/(wt) is then the impulse response of the system H and (15.41)
describes the convolution of the input signal x(t) with the impulse response. The
alternative calculation in the frequency-domain is the multiplication of the input
signal’s spectrum X (jw)} with the transfer function of the system H

Hy(jw) = —jeign{w} . (15.14)

This method using the frequency-domain is significantly simpler amd safer to
use than evaluating the convolution integral {15.41}). Furthermore, exploiting dual-
ity this method can also be used on (156.19) and likewise on discrete cansal systems
and unilateral periodic spectra.

From (15.40), it can be seen that a certain real part Re {h(¢)}, also defines the
corresponding imaginary part apart from an additive constant, if the spectrum has
no contribution for w < 0. Therefore, from a real signal z(t) a new signal x;{#)
can he derived by

w1() = () + H{(0)} (15.45)
The relations (15.39) and{ 15.40) hold for its real and imaginary components. It

therefore has a one-sided spectrum X, {jw). The mean value of the imaginary part
has been arbitrarily set to Im{Hg} = 0; it could have been any other value,
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z(t) H Z(t)
2 s = o= 8
? )y 7

XGw) - - [-gmsm)] = X(w)

Figure 15.3: Hilberi-transform m the time-domain and frequency-domain

The complex signal of time (%) is called the analytical signal corresponding
to the real signal «(). The analytical signal allows a simple description of impor-
tant communications and signal processing systems like modulation, sampling of
band-pass signals, flier banks and others. The following example shows a typical
application.

Example 15.2

Figure 15.4 shows an arrangement for transmission of a real signal x(t). Iis
spectrum X (jw) has a band-pass characteristic with limit frequencies wy and wsy.
In gencral, X (Jw) is complex, but in Figure 15.4 only a real valued spectrum is
shown, for the sake of simplicity. X (w) has conjugate syvameiry (9.49), as x(#)
is real, and because of this symmetry, the left sideband is a reflection of the right
and containg no further information.

K is advantageous ko transmit only one of the Lwo sidebands, so that enly
half the bandwidth is needed. The missing sideband can be reconstrueted by the
receiver as the symmetry is known, It is also useful to reduece the bandwidth if the
signal is going to be sampled (see Chapter 11.3.2). From Table 11.2 we can see
that a complex band-pass signal with a unilateral spectrum (shown in Figurel1.14)
requires only half the sampling froquency that a real band-pass signal needs, H now
reinaing to be shown how a complex band-pass signal with a unilateral spectrum
is fornied from a real band-pass signal.

This is where the Hilbert transform comes in. The signal x4 (#) (15.45) has the
real and imaginary parts

Re{z:(t)} = «(¢), Em{an (¢}} = H{z(t)} {15.46)

snd the desired right-sided specirum Xy (jw}. Ib can be eritically sampled with
Wy = wy — wy, Tegardless of the specific values of wy and wy. The resultant signal
23(1) has a periodic spectrum that does not overlap. The original signal x(t) can
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X(jw)
/] wi1\wz @
X (o)
Re{x(0)} {11 N
_____ N\ 40}
S Xy(j)
Re{x2(0)) | Im{xm) \NM
ar

fona] | ] wro)

x3(8) x4(1)

i

Re Im

xir)

Figure 15.4: Signal transmission with the Hilbert transformator

be obtained by filtering both of the real signals Re{xs(t)} and Tin{wo(t)} using a
complex band-pass BP, with transfer funetion (11.40)

T w <w<we
Ipr(jw) =

0 otherwise

2

snd the sampling interval 1" = . The signals x5(t) and «4{t) produced are

Wz —uh
both complex signals, and their combination

w3{t) + ja4{t) = x((F)

yvields the signal 21({¢}, which has a one-sided spectrum. The real part Ref{x ()}
is the real original signal x{t), and x3(¢) and w4(#} must be combined accordingly

R.E{Il (t)} = Rﬁ{i’g (f) -+ _}I‘q(t}} = Rf{ﬁ,g(f)} - ]ITl{.’l’,‘_rl (L)}
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for z(t) to be recovered. As the input signal of both complex band-pass filters is
purely real, it is clear that in one branch only the real part of the impulse response
must be considered, and in the other only the imaginary part.

Compared to critical sampling of real valued band-pass signals {see Chap-
ter 11.3.4}, the sampling rate is reduced by a factor of two., Howcver, consider
that in our example, each sampling value has a real and an imaginary part, while
in Chapter 11.3.4 ali sampling values were real. The required number of real sam-
pling values per time is thus the same. However, we may use analog-to-digital
converters with half ilie sampling rate and we need not pay attention to the rela-
tion between the band cdges w; and wy for critical sampling.

15.4 Exercises
Exercise 15.1
Which of the following discrete systems are causal?

a) ylk] = erzfk + 1} + co(®]

b} ylk] = afk|={A]

&) ¥kl = alk + [k

d) y[k] = sin(n - z{kl)

e) ylk] = z[2k]
Exercise 15.2
For wq > 0, ealculate the Hilbert transform of ale? " b) sinwpt, ¢) coswet and 4}
cos 2wt in the frequency-domain. Note: see Figerel5.3. For each part, give the
phase shift between the input and ontput signal caused by the Hilbert transform.,
Exercise 15.3
Censider the real signal z(t) with spectrum X (jw). Some properties of the Hilbert
transform y(t) = H{z(#}} = port xx(1) are to be investigated. The impulse response

ig

of the Hilbert transformator is indicated by A(t).

a) Give H{jw)e—o h(t) and sketch the magnitude and phase of H(jw). How
does the Hilbert transform affect | X (jw)| and arg{X (jw)}?

b) Is y(t) real, imaginary or complex? What symmetry does the Hilbert trans-
form of the even part z.(f) and the odd part z,(¢) have?
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¢) Calculate the cross-correlation function of the {(deterministic) signals x(#)
and y(t) for ¢ = 0, ie. g (0) = [7 x(t)y(t) dt. Which property of the

x
-
Hilbert transform of real signals can be derived from this result? Note: see

Chapter 9.8 and $.9.
d) Compute the Hilbert transform of the Fourier series
A o
zp(t) = —Z'l + Z [a, cos(wort) + by, sin{wert)], with we > 0.
w=1
Exercise 15.4
1 —cosw,t .
Given the signal 2:(f} = % » ——m@—‘;—f—g— and its Hilbert transform &(t) = H{z(¢)}.
g

a) Calculate and sketch X (jw) e—o z(2).
Note: Use the multiplication theorem of the Fourier transform, Chap-
ter 9.7 5.

b) Determine X {jw)e —o2(t) graphically and calcnlate #(t). Note: consider
Figure 15.3.

¢} Let x,(f) = z{#)+ 3£(¢). Which special property exhibits X, {(jw) e—o,(t)?
d) Calculate X,(jw) formally in dependence on X (jw).

Exercise 15.5

What is the connection between the energy of a signal z(t) and the Hilbert trans-
formed signal () = H{x(t)}7 Assume that the signal has no DC component.
Note: rcfer to the Parseval theorem in Chapter 9.8.

Exercise 15.6

Let Xi(jw) be the spectrnm of the real signal z,(1) and Xo(jw) = (1 +
sign{w)}) X1 {(fe) the one-sided spectrum of a signal a,(t).

a} Determine xz(t) in dependence on x(1).
Note: Consider which transforin corresponds to the required convoluticn.

b) Determine the relation of the signal cnergies of 24 (1) und z4(¢). State both
energies directly in the frequency domain.

¢} Determine the relation of the signal energies of #1(#) und x2{t} by a consid-
eration in the time domain. Use the result of Exercise 15.5.

Exercise 15.7

A sketch of the real function P(jw) is shown, which is part of the transfor function



380 15. Causality and the Hilbert Transform

H{jw) = P(jw) + jQ(jw) of a causal system.
P{je

=i i (Ug

a} Determine the corresponding impwulse response hit)o—e H{jw). Note:
e{0) = 5
1) Find the imaginary function Q{jw) with (15.18}.
¢) What symmetry do p(t) o~ P(juw), ¢t} o—e Q(jw) and Q(jw) show?
Exercise 15.8

An audio signal with the spectrum S(jpw) is to be transmitted. In order to save
bandwidth, the signal spectrum is 0 for |wl > w, = 27 x 4 kHa.

S(joy)

—{JJg (!'.'g

a) The signal s(2) is modulated by cos{wot).

s(0) ‘.QF__‘ Sl

cos (it
Give the spectrum of s,,(t).
b} How much bandwidth does Sas{jw) use compared to S(juw)?

¢) To remove the disadvantage found in part b}, the signal will be transmitted
according Lo the following represcmation

cos mor
(1) ——— k)
Sll] fﬂ{]f

*—5{

This method, known as single sideband modulation (SSB) takes advantage
of the redundancy present in the spectrum of a real signal.  Draw the
spectrum of Sgar(jw).
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d) How much bandwidth does Sgar(jw) nse compared to S{jw)?
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16 Stability and Feedback Systems

As well as causality, another important. criterion that must be met for a system to
be implemented is stability. If a system is stable, and the input signal is bounded,
then the output signal cannot grow beyond limit. This condition must be fulfilled,
if continuous systems are to be realised based on the fundamental physical principle
of conservation of energy, for example, elecirical, optical, mnechanical, hydrauvlic or
pnenmatic systems, For a discrete system the signal amplitude must stay within
certain limits as defined by the permitted numerical range of the computer being
used. The fArst thing we will do in this chapter is investigate the connections
between stability, the frequency responsc and the impulse response tor general LTT-
systems. Then we will restrict ourselves to causal systems and consider stability
tests using the pole-zero diagram. Finally we will discuss some typical uses of
systems with feedback. We will again be dealing with continuous and diserete
systems at the same time,

16.1 BIBO, Impulse Response and Frequency Re-
sponse Curve

There are various possible ways of defining the stability of & system. Among them,
BIBO-stability is particularly useful for LTT-systems. First of all we will introduce
the concepts bounded funclion and bounded serics.

Definition 21;: Bounded function, bounded series

A function 15 sazd to be hounded when s magnitude 1s less than o fized limat
for all time £

l=(t) < M, < co, Yt. (16.1)

Correspondingly, the condition

|z{ell < Ma < 0o, V. (16.2)

1¢ sufficient for a sermes to be bounded.

With these definitions we can define stability:
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Definition 22: Stability

A contimuous-time {discrele-tume) LTI-system 1s stable of o reacts to a hounded
wmput function w(t) (input series w{k]) with o bounded output function y{t)
{output serves y[k]).

This can be neatly expressed as:

Bounded Input.  ——  Bounded Ouiput.

This stability definition is therefore calicd BIBO-stability.
As with causality, stability conditions can be given for the impulse response
of LTI-systems. From these, we can also find connections with the frequency

response and the trapsfer function. We will derive this separately for continuous
and discrete systems.

16.1.1 Continuous LTI-Systems

From the general definition of BIBO-stability, the following condition for the sta-
bility of continuous LTT-systems can be derived:

A continuous LT T-system is stable if and only if its impulse response can
be absolulely integrated:

/ TR dt < My < o0 (16.3)

o —o0

We will first show that this condition is sufficient for BIBO-stability. Yo do this
we form the roagnitude of the output signal Jy(t}| using the convolution integral.
Taking a hounded input signal z(t) (16.1) and an impulse response A(t) that can
he absolutely integrated, we can directly find an upper bound for [y{¢)i:

19&)[ )[_O; ()it — tide

< /m le( ) Wt — T)ldz

< ] UMy - Dlde = M [ |h(t) |t

)

< My M < o (16.4)

Note that the impulse response must be abolutely integratable. In order to
show this, we consider the rather unpleasant bounded input signal
h*(—t
o) = 20
(1)1

: (16.5)
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and calenlate the value

y(U) = fxl H{oh(—tidr = /x Wbz, fm \h{7)|dz. (16.6)

oo S IR(T)| J oo

The result is only finite when the impulse response can be absolutely integrated,
otherwise |y(t)| would not be bonnded.

As we discovered in Chapter 9.2.2, if the impulse response can be absolutely
integrated, the Fourier transform H(juw) = F{h{t)}, — the [requency response of
the stable system - must exist. Because the Fourier integral s bounded (sec (4.5)),
it can be analytically coutinued, and i3 the same as the Laplace transform on the
imaginary axis s = jw. That means that for stable systems, the imaginary axis
of the s-plane is part of the regiou of convergence of the system function. The
frequency response of a stable system cannot have any singularities or discontinu-
ities.

16.1.2 Discrete Systems

For disercte LTI-systems:

A discrete LTI-system is stable if and only if its impulse response i i

summable;
e )

3 rlkit < My <. (16.7)

b=—oo

The proot is exactly as for continuous systems.

Tt can be shown in the same way how the existence of the frequency response as
the Fourier translorin H{e/) = F.{Alk]} of the impulse response hik] agrees with
the transler function A {z) = Z{hfk]} on the unit circle of the z-plane. Correspond-
ingly, the frequency response of a stable system must not have any discontinnities
or singularities.

16.1.3 Examples

We will clarify the use of the stability criteria (16.3) for continuons systems with
a few exaiuples. Stability is shown in the same way for discrete systems, using
(16.7).

Example 16.1

For the simplest example we consider a systern with impulse response

B(t)=e¢™e(l) eeR. (16.8)
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To determine the stability from the ecriteria in(16.3}, we investigate whether the
impulse response can be absolutely inteprated:

1
G 20 - fora=>0
f le=“* (i)} dt = f e Mg =¢ ¢ (16.9}
O

e o otherwise
and obtain the result: the system is stable for a > 0.

For a = 0, the impulse response takes the form of the step lunction A{t) = £{2).
We recognise the impulse response of an integralor from Chapter 8.4.4.1, and with
(16.9) we can say the [ollowing about the system stahility: an integrasor is not
BIBO-stable. This is not surprising when we recall the response of an integrator
to a step function (). The integral over this bounded input signal grows with
increasing time over all Iimits and thus violates the condition for BIBO-stability.

Example 16.2

When we dealt with the sampling theorem in Chapter 11.3.2, we used a system
with a rectangular frequency response and a sine function impulse response (11.35)
as an interpolation filter for sampling., This is also called an ideal low-pass filter.
We now want to investigale whether such a system can be realised.

Considering the impulse response in Figure 11.11, it can be immediately seen
that the impulse response of the ideal low-pass is a bilateral signal. The ideal
low-pass is therefore not causal.

As the frequency response of a stable system cannot have any discontinuities,
we suspect thal the ideal low-pass is also unstable. In order to confirm this, the
unit of time in (11.35) is chosen so that T' = 7 for simplification, and the impulse
response is

h(t) = silt). (16.103)

We now have to determine whether the integral
o0 20 t o0 | o 1 )
f (1) dt = / ]"Tt N - ]U l%f)' dt (16.11)

has a finite value or grows beyond limit. We do this by estimating the area
under |h(t}] with a series of triangles whese areas are all loss than the area of the
individual sidelobes in Figure 16.1. The baselines of the triangles each have width
7 and heights decreasing by 1/t. The infinite sum of these triangle area is a lower
bound for the area under the magnitude component of the impulse response [A{t)}{:

Flrgie-it
2 m-+‘—?§£_2

2/ I(e)] dt . (16.12)

B |
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The sum itself is a known harmonic series, and does not converge, which shows
that the impulse response of the ideal low-pass canmot be absolutely integrated.
TFhe ideal low-pass is therefore neither causal nor stable.

- 1
~ {

0 \%m;;ﬁm .
g S Im 9
2 2 2z 2

Figure 16.1: Estimating the area under the |si|-function

After this example we have to ask whether it is worth examining such idealised
systems, when they are impossible to implement. The answer is typical from the
point of view of systemns theory:

o The ideal low-pags filter with an entirely real rectangular frequency plot is
a very simple concept. It allows many operations to be considered in the
simplest form, for example, limiting spectra, and reconstructing continuous
sighals fron: samples.

o 'The ideal low-pass cannot be precisely realised but can be approximated if
gome concessions can be sccepted. An example for this could be:

— Noneritical sarmpling.
Oversampling allows the steepness of the edges to be reduced (see Fig-
ure 11.9). The impulse response then decays more quickly and therefore
can be absolutely integrated and stable beliaviour bas been achieved.

— Permitting a time-delay.
The impulse response of the ideal low-pass filter can be approximated
well by a causal system if it is shifted far enough to the right.
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16.2 Causal Stable LTI-Systems

LTE-systems that are causal and siable at the same time can be recognised hy
the lacation of thelr singularities in the complex s-plane. We will first give their
properties in a geveral form and then specialise the vesult for /T -systems with
rational transfer functions.

18.2.1 General Properties
16.2.1.1 Continuous Systems

The ROC for the transfer function of & continnous LT -system. gives us important
information about the causality and stability of the system. We will look back at
the ROC of the Laplace transform in Chapter 4.5.3.

Causality means that the hnpulse response is a right-sided signal, The ROC
of the Laplace transform for right-sided signals lies to the right of a line in the
s-plans, which is parallel lo the imaginary axis, Therefore, the transfer function
of a causal LTL-system converges in a region of the s-planc that lies to the right
of the singularity with the greatest real part.

Now we lock again at the property of stability. 1 implies that it must be pos-
sible to absolutely integrate the impulse response. We have already said that this
means the maginary axis of the s-plane must be part of the region of convergence
of the transter function. As this must lie to the right of a border parallel to the
imaginary axis, however, this means that the border must lie to the left of the
imaginary axis, in the left haif of the s-plane {see Figuze 4.5).

Where then, do the singularitios of the transfer function lie? Since the ROC is
free from singularities, they must lie to the loft of the line, in the left half of the
s-plane.

We can sumumarise this insight with the following statement.

All of the singularities of the transter function H (s} for a caussl, stable,
contimuous LTEsystem must lie i the left half of the s-plane,

16.2.1.2 Discrete Systems

For discrete systerns we look at the properties of the ROC of the z-transform, to
find similar results.

For a causal discrete LTI-system, the ROC of the transfer function H(z) lies
ontside a eirele around the origin of the z-plane. Because the unit circle must be
part of the ROC for a stable system, the radiug of the border must be less than 1,
and since the singularities cannot le in the ROC, thoy must be inside this circle.
‘Therefore:
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All of the singularities of the system function H(z) for a cansal, slable,
discrete LT T-system must le within the unit circle of the z-plane.

16.2.2 LTI-Systems with Rational Transfer Functions

The general statements can be mae tore precise for aystems for which the transfer
function is rational. Their singularities are simple or mdtiple poles that define
the characteristic frequencies of the system. We can describe these systems with
pole-zero diagrams,

16.2.2.1 Continuous Systems

For continucus LT T-gystems a stability criterion follows immediately.

The poles of the system function H{s) for a causal and stable continuous
LTI-system Ne in the left half of the s-place.

To illustrate this property we must recall the internal term iy () of the output
signal from Chapter 7.3.3. It describes the part of the output signal that is cavsed
by the initial state of the system. The Laplace transform of the internal term can
be represented (see (7.92)) by partial fractions with poles s,. In the time-domain
this corresponds to the sum of the system’s characteristic frequencies, which we
have only written out here for N simple poles:

fi)

N.oA
Ylnt(s) = -
255
N
wl) = Y Aw™e(t). (16.13)
=1

For pole 8, = &, + jw;, the real part o, < 0 is in the left half of the plane, so the
corresponding characteristic frequency decays
lim ¢*f = lim e - et =0, (16.14)
1 riog t—soy
The condition for stability, that all poles e in the left half of the s-plane, means
ihat in the time-domain, the response to the iniiial conditions decays with time,
just what we expect for a stable system. This is clear from Figure 3.3 which shows
that only poles in the loft hall of the s-plane correspond to decaying exponential
oseillations. The decay of the internal terin means that the inital state of & system
doos not define the system behavionr, as long as one I8 prepared to wait long
enough.
The location of the zeros in the complex plane does not influence the charac-
eristic fregnencies and thus has no influence on the stability of the system.
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16.2.2.2 Discrete Systems

A correspending result holds for discrete systems:

The poles of the system function H{z) of a causal and stable discrete
LTT-system lie within the umnit cirele of the z-plane.

Here we can also see the connection between the location of the peles in the
complex frequency plane and the system’s characteristic frequencies in the time-
domain (sec Exercise 16.5). The stability conditions can alse be illustrated to aid
understanding, as in Figure 13.6. The internal term of the system response here
only decays if the corresponding poles lie within the unit cirele. Again, the initial
states have no influence if one waits long enough.

Example 16.3

Figure 16.2 shows four pole-zero diagrams of hoth continuous (left) and discrete
(right) systems. We can sec imrnediately from the location of the poles that only
the first and third continunous system (likewise discrete system) are stable. If,
however, bilateral impulse responses are permitted - systems which are not causal
- the first three continuous systems and the first, second and fourth discrete system
are stable. The ROC must be chosen so that it includes the imaginary axis of Lhe
s-plane, or the unit circle of the z-plane. When poles lie directly on the imaginary
axis or unit circle, this becomes impossible, and the system will always be unstable.

16.2.3 Stability Criteria

If the transfer function of an LTI-system in rational form is determined from a
differential or difference equation, culy the numerator and denominator coeflicients
are obtained at first. In order to check the stability with the location of the poles,
the zeros of the denominator polynomial must be deterinined. This can be given
in closed form for polyromials up toe the third degree, but for higher-order systems
iterative procedures are necessary. Once the digital computers needed to carry out
these procedures were unavailable, but modern computers can do this easily. To
avold having to perform the numerical search for the zeros by hand, a series of easy
to perform stability tests were developed. Instead of calculating the individnal pole
locations, they just determine whether all poles lie in the left half of the s-plane
{or unit circle of the z-plane}. We will ouly be considering onc test for continuous
and discrete systems because the tests all have essentially the same effect,
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Figure 16.2: Pole-zero plots for stable and unstable systems

16.2.3.1 Continuous Systems

For continuous systems we will describe Hurwitz’s stability criteria. It does not
invelve searching for zeros, and directly uses the coefficients of the denominator
polynomial in the transfer function.

To use it we put the transfer function in the form

P(s} ;
His)= =, 16.15
(5) = 5o (16.15)
go that the numerator polvnomial
Q(S) = SN + a13N_1 + GQ&’N—E + ... tay_13tey {1616)

has & one as the coeffictent of the highest order,



392 16. Stability and Feedback Systems

A polymomial is a Hurwitz pelynomeal il all of its zeros have s negative real part.
The systern is stable if its numerator potynomiat Q{s) is a Hurwitz polynomial, and
Hurwitz’s stability criteria determine whether this is the case. The test consists
of twa parts:

s A necessary condition for a Hurwitz polynomial is that all coefficients a,, are
positive:
>0, n=1,...,N. (16.17)

It can be only be fuifilled if all orders 8™ in Qfs) exist, as otherwise there
would be a coeflicient «,, = 0.

For ¥ = I and N = 2 this condition is sufficieni and the test is finished, bat
for N > 2 the following conditions must also be tested.

& To lormulate the necessary and sufficient condition, the Huruntz determi-

nants for 2 =1,2,..., N are set up:
ap 1 {} {)
[£3%3 [#5) 22 1 . {
A, = a5 g aqg ... 0 (16.18)
0-2_{:.—] 32;1—‘2 v ﬂ-;.ﬂ,
with
a, =0forv >N, {16.19)

Q{s) is a Hurwitz polynomial if all Hurwitz determinants are positive.

A,>0for p=12,...N (16.20)

That concludes the Hurwitz test. We illustrate how it is carried out in Exam-
ple 16.4. A related procedure - Routh’s stability test — can be found in [23, 19].

16.2.3.2 Discrete Systems

For discrete systems, it must be determined whether all poles He within the unit
circle. We will therefore be using a procedure which maps the complex z-plane
onto the complex s-plane, where we can carry out a stability test for continuous
systems.
The bilinear transform s a suitable way of doing this:
s+1 z+1

s—1 ' T Io1

(16.21)

=
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It maps the inside of the unit circle |z| < T onto the left half-plane Re{s} < 0. We
can show this by considering the magnilnde of s =0 + juw

(o +1)% 4 w?

o] = g f —— T | 16.22
4] (o0 —1)2 +w? ( )
r |z} < 1 follows o < 0.
The stability of the discrete systein
Hiz) = ﬂﬁ {16.23)

Qlz)

is guaranteed if the zeros of the denominator polynomial Q{z) lie in the unit circle
of the z-plane. To check this we form the the rational function (s) from Q(2),
using the bilincar transform

G(s) = Q(*’ - 1) - (16.24)
§—~1

Zeros of Qs) (and so also of Q(2)) can only arise from the numerater polynomial

of Q(s), so we test whether the mumerator of Q(s) is a Hurwitz polynomial. If it

13, the zeros must lie in the left half of the s-plane and the zeros of Q{z) must lie

in the unit clrcle of the z-plane.

The bilinear trapsformation (16.21) in comparison with other transformations
that map the areax within the unit circle onto the left half of the s-plane has the
advantage that Q(s) is a rational function and we can use the Hurwitz test, for
example.

On closer inspaction, however, our procedure 18 still flawed: the point z =1 is
projected to the point 5 = oo {see (16.21)}, so it is not included in the Hurwitg
test, We have to test this point Q1) as well,

The stability criterion for a discrele system with transfer function H{z) i+ now:

. Q(z)
numerator polynomial of Q(s) = Q(Z—ii) is a Hurwitz polynomial and

i Q(1) # 0

A discrete system with transfer function H{z) = i stable if the

We will now demonstrate the stability test with an example.

Example 16.4
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Figure 16.3 shows a fourth-order recursive discrete system. In order to deter-
mine its stability we first vead from the block diagram:

3 3 3 _.
Y(zy=Y() | szt + a2 =270 lz_“ + X(z) (16.25)
2 4 8 4
and froin here obtain the system function
¥z} 24 2t
X{z) -3 -d22-22-F  Q2) {

Using the bilinear transformation, the denominator {z) becomes the partial frac-

tion Q(s):

o s+ 1 —1.875{s% — 1.4667s% — 3.252 — 3.8667s — 1
i) = Q( ) - ( s )

ol IR . (16.27)

We 1must uow test the polynomial in parenthesis in the numerator of Q{s) to
ascertain whether or nol. it is a Hurwitz polynomial. The necessary condition for a
Hurwitz polynomial {16.17) is not fulfilled as not all of the coefficients are positive.

We can now make the following deductions:

= Q(s) has zeros with Re{s} > 0.
= Q{z) has zeros with |z} = 1.

= H{z) has poles with |z| = 1.

= The system is unstable.

Of course, the zeros of the denominator polynomial (2{2) can be found using a
computer. The result is

Q) =2 (c+g) (24 3k

There is a zero at z = 2 which is outside the unit circle, and this confirms the
result we obtained using the hilinear transform and the Hurwitz test.
||

16.3 Feedback Systems

The discussion of stability so far has been limited to systems that were exclusively
described by their transfer function. Now we will consider feedback systemns that

we are already familiar with from Chapter 6.6.3. Of course, an UFl-system with
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xlk] 3 > vk}
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Figure i6.3: Fourth-order recursive discrete-time system

feedback ecan be described by a transfer function, as shown in Figure 6.15, but the
information shout the individual transfer functions of the forward and feedback
paths ig lost {in Figure 6.15 these ave F{s} and G{s)). The feedback principle
is used in many areas, both natural and technical. We will show three typical
problems that can be solved using feedback.

16.3.1 Inverting a System Using Feedback

In Example 6.9 we saw that feedback can invert the transfer fonction of a gystem.
Figure 16.4 shows the situation again, but in contrast 1o Figure 6.15, the feedback
path contains another change of sign. The transfer function of the closed loop is
then

_ Y{s) K 1

= for K1G(s)} > 1. {(16.28)

{s) = == —
B = 50 S 15 RkGE "~ Gl

The poles of the whole feedback system H{s) are the zeros of (/(s). They must lie
in the left half of the s-plane, so that stability can be assured. The poles of G{s),
however, have no influence on the stability of the feedback system.

Continuous systemns that have no zeros in the right s-planc are called minvmal
phase systems. Correspondingly, discrete systems with no zeros outside of the
unih ¢ivele are also called minimal phase systems. For the inverse systemn E(%?T {or

Eﬁ}?) to be stable, G{s) {or G{z)} has to be minimal phase and additionally may

not have any zcros on the imaginary axis (or on the unit circle) of the complex
frequency plane.
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Xt} y(#)

{] G(.f;i

Figure 16.4: Structure of the system G{s) with feedback loop

16.3.2 Smoothing the Frequency Response with Feedback

‘When constructing an electronic amplifier, for example, for audio use, the principle
of negative feedback (iHustrated in Figure 16.5) i very useful. An smplifier with a

1}
x() ) J’(—

K

Figure 16.5; Smoothing the fieguency response with feedback

very high factor of amplification |F'{jiw}| 3 1 can be built easily, if strong variations
in the frequency response F(jw) can be tolerated. Some of the amplification is
then sacrificed, by connecting the output back to the input with a gain factor K.
The resulting freguency response

H{jw) = — 2 ng —  for K- F(jw) > 1,
i3 nearly constant. It is importaut, of conrse, that |F(jw)} is large enough that the
inequality |5 - F{jw)| > 1 is also true for small values of K, so that the negative
feedback systeni has a sufficiently high amplification 1/ K.

16.3.3 Using Feedback to Stabilise a System

In meny control system applications, the forward path {(the ‘plant’) is a large tech-
nical installation that cannot be changed by simple means, The system behaviour
ean only be modified by coupling a second system to it, uvsually as a backwards
path, creating a cloged feeback loop. This second system is also called the con-
troller, and is construeted so that its properties can be changed without too much
effort. We will now be considering whether an unstable plant can be coupled with
o feedback system, to vield a complete system that is stable,



16.3. Feedback Systemns 397

We will start with the fivst-order plant from Figure 16.6. The forward path of
the system has the first-order transfer lunction
. b
His) = , o ax»l b0

5 — 1

and a pele at 3 = a > { in the right half of the s-plane. It is therefore unstable, We
choose for the feedback path, a P-circuit {shown in Figure §.24) with amplification
K. The transfer function of the feedback system is

unstable fora > 0

X(s) ¥(s)

Figure 16.6: First-order plaxt with P-control

_Y(s)  H(s) b ‘
T X(s) L1+KH(s) s—a+K-b (16.29)

Q(s)

and it has a pole at 5 = a4 — Kb. The location of the pole can now he influenced
by the amplification factor & of the P-circuit. Figure 16:7 shows the possible pole
locations dependent on amplification K. For K = } the feedback has no effect
and the pole lies at s = a. Growing values of X move the pole to the lefi and
when K > afb, it is in the left half of the plane. Sufficiently large amplificasion
can make the overall system stable. The path on the s-plane that the pole follows,
dependent. of the amplification, is called the root locus.

Im{s}
K=0 r
a Refs}

Figure 16.7: Root locus of the control circunit from Figure 16.6

Feedback can also have the opposile effect: a stable plant can be destabilised
by feedback. Here we start again with Figure 16.6, but this time choose o < 0,
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b > 0 and K < 0. The pole of the systemn without feedback now lies in the left
half of the s-plane. For K < 0 it moves to the right and at K = a/b it reaches the
right half of the plane. Figure 16.8 shows the corresponding root locus.

Im(s}

a/l K—-®  Re(s)

a
Kﬁg

Figure 16.8: Root locus of Figure 166 fora < 0, K <0

The influence of the P-circuit and the sign appearing at the summation node
in the feedback path on the system as a whole can be summarised as follows:

¢ Positive feedback destabilises a system.
s Negative feedback stabilizses a system.

Unfortunately, for higher-order systems the relationships are not so simple.
We can show this with a second-order plant depicted in Figure 16.9. The transfer
function in the forward path

H{s) = , a€R (16.30)

s +a
has two poles at s = &+/—a and is therefore unstable for all 4. Using a P-circuit
for feedback the oversll transfer funetion

_Y{s) _ H({s) b o
U= X6 T TV RAG) ~ Frat Kb (16.51)
is obtained. Figure 16.10 shows the root locus for a < (.

For K = 0 all of the poles of the system lie on the real axis, one in the right
half-plane, For K < {} nothing changes, as the poles just move further away. Tor
K > { the poles move along the imaginary axis and for & > (~a)/b they form a
complex conjugated pole pair on the imaginary axis. Clearly it is not possible here
to move both poles inte the left half of the s-plane using P-circuit feedback, This
can be confirmed by a Hurwitz test. The denominator polynomial s2 +a + Kb in
{16.31) is not a Hurwitz polynomial, as the coeflicient of the linear term in ¢ ig
equal to zero.

The systemn ean be successfully stabilised with proportional-differential feed-
back as in Figure 16.11. This leads to an averall transfer fanction for the system

Qls) = Y {s) _ H{s) _ b
X{s) 1+G(s)H{s) &2+bKas+{a+ Kb}’

(16.32)
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X(s)

b
H(s}=
s +a

unstable for alt a

¥(s)

K

Figure 16.9: Second-order plant with propertional control

Im{s}
AR —>
o 7
11(:6' / xioK_:um Rels
b 1K

Figure 16.10: Root locus of the control ¢ireuit from Figure 16.9

for which the denominator palymormial is a Hurwitz polynomial, if the constant K,

and K5 are chosen so that

bKy >0 and a+ Kb>90.

X(s)

(16.43)

b

.5‘2 +a

His)=

¥(&)

G()=Kj+Kas

Figure 16.11: Second-order plant with proportional-differential control
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16.4 Exercises

Exercise 16.1

The stability of a system with impulse response h(f) = e ™% sin(3x1)e(#) s to be
investigated.

a) Can the impulse response be absolutely integrated?
b} Check ihe location of the poles.

Exercise 16.2

Show that (16.7) is a necessary and suthicient condition for the BIBO-stability of
a discrete LTI-systewn.

Exercise 16.3
A discrete LTl-system is described by the following differential equation:
ylk] = xlk] ~ oS¢k — 6] with 0 < |a| < oo.

a) Determine f,{z) = {% and the corresponding pole-zero diagram. Give the
ROC of H\(z). For what values of ¢ i3 the system stable?

b) Determine the transfer function H,(2) of a second discrete system so that
Hi(z) Hof{z) = 1. live both pussible ROCs of Hqy(z) and determine for
each whether it {4 stable.

Exercise 16.4

A system is given by the differential equation yi&] — Lyfk ~ 1] + Sylk — 2] = =)
a) Give the transfer function H{z) = l{% of the system,
b) s the system stable? This should be determined

o) with the pole-zere diagram,
/) with the bilinear transformation z = % and a stability test for con-
tinuous yysterms.
¢} Is the system minimal phage?

d} Is the system causal?

Exercise 16.5

Using the internal component of the vutput signal, give a motivation that a discrete
system is stable if its poles lie within the uuit circle of the complex z-plane (see
Section 16.2.2).
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Exercise 16.6

Test the stability of the systemns

3
s°+1
H =
a) H(s) ~2.58% — 11.255% ~ 20s? — 17.55 — 5
% — 0,125
by H{s}= st — 4.58% 4 8a% - Ts 2
s+ 2
H T — JEE—
¢} His) sh4ps+2 7

without explicity finding the poles. Are the systems minimal phase?

Exercise 16.7
Where is tho left half of the unit circle on the z-plane projected to on the s-plane
when transformed hy the bilinear transtorm {16.21)7

Exercise 16.8
23n{s? + 1)

A control loop with F(s) = s and G(s) = — is given.
Uis
X(s) - E(s) »¥(s)
R Gis)

For the open loop the transfer function is Hy(s) = ;fﬂ(% and for the closed loop,
His) = i\’{l_

a) Determine Hy(s) and H{s}.

b) Ts H{s) stable? Where are the poles of H(s}?

¢) Clan the system be stabilised by a suitable choice of V7

d) Vo = Z5. At what [requency wq is the system unstshie?

e) Caleulate r(t) for u(t) = sin(6t) and Vg = 5.
Exercise 16.9

Consider a system S; with transfer fuuction H(s) = i1

a} Is H(s) stable?
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b) & will now be incorporated into a feadback loop.

X&) Hiz) —= (3}
+
K

Give the new transfor function H,(s) = —X—‘(%

¢} For what vatues of K is the feedback system stable?
d) Test the stability for K < 0O with h.().
Exercise 16.10

A gystem hag transfer function H{s) = X_(él) with F(¢) =

X(5) —{?: ) - ¥(s)
| G{s}

a) Draw the pole-zero diagram of H(s} when G(s) = 0. Is H(s) stable in this
cage?

25+5

b} To stabilise H(s) proportional feedback is provided by G(s) (with real am-
plification K. Draw the root locus of H(s) for 0 < K < oo. For what values
of K does the stabilisation succeed?

Exercise 16.11

H{s} is as in Exercise 16.10, although F(s} = —pue—n ig TE
54 — s

a) Draw the root locus for G(s) = K. Can the system be stabilised?
b) I CG(s) is changed to provide differentinl feedback with K real, can the system

then be stabilised? If yes, for what values of K7
Note: consider the Hurwity test.
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17.1 Introduction

All of the continuous and discrete signals that we have considercd so far in the
time-domain and frequency-domain were signals that conld be described by math-
ematical functions. We could caleunlate the values of the signal, add and subtract
signals, delay signals, and formn derivatives and integrals. We found integration
very useful, for convolution, for Fourier and Laplace transforms, and we also used
complex infegration for the inverse Laplace and inverse z-transforms. For discrete
signals summation is used instead of integration. This was all possible because
we had assumed that every signal had one definite valug at every point in time,
and that every signal could be described by a mathematical formula, however
complicated that formula might be.

Many signals that oceur in practise do not conform to this assumption. It
would be theoretically possible to describe the speech signal from Figure 1.1 with
the properties of the human vocal tract by superiinposing various waves, but this
would not lead to a technically realistic solution. It is completely impossible to
assign functions to noise signals, or signals made up of chaotic oscillations. A new
concept must be found to represent such irregular processes, Just understanding
that a signal waveform can have an unpredictable value and is therefore random,
does not actually help much. To deal with system inputs and outputs in the way we
are used to, random signals must be described by non-random, or ‘deterministic’
guantities. This can be performed by the so-called expected values, which are
introduced in the next section. Then we will deal with stationary and ergodic
random processes, for which a significantly simpler caleulation is possible with
expected values. An important class of expected values are correlation funections,
which will also be disenssed. All of these forms for deseribing random signals will
be introduced for continuous signals, and the chapter concludes by extending the
concepis to discrete random siguals.

17.1.1 What Are Random Signals?

The gignals that we have been working with so far are called deferministic signols,
which means that a signal has a known unambiguous value at every point in
time. A signal can also be deterministic when it cannot be described by simple
mathernatical functions but instead, for example, by an infinite Fourier series.
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Signals that have unknown behaviour are called non-determinstze signols,
stochastic stgnals or random signals. Examples of random signals in elecironics are
interference signals like antenna neise, amplifier distortion or thermal resistance
noige, but ugelul signals can also be stochastic. Tn comnuinicasions, it is pointless
transinitting a signal already knowu to the receiver. In fact, [or a receiver, the less
content of a message that can be predicted, the greater the information content in
the message,

17.1.2 How Can Random Signals Be Described?

To describe random signals we can first of all try to start with the signals them-
selves. When the signal form itself cannot be mathematically described, it can still
ke measured and a graph can be oblained, for exampls, in Figures 17.1 and 17.2.
it is not known whether Fourier, Laplace or convolution integrals of the random
signalds exist, or whether the methods used to calcuiate the spectrum or system
function are even defined. Even when the existence of an integral is certain, the re-
sulting spectrum or outpat signal is itself again a random variable whose behaviour
we cannot make any general statements about.

We can, [or example, interpret the signal in Figure 17.1 as the noise of an
amplifier and caleulate the response of a post-connected systemn. The knowledge
of this output signal, however, caunot be transferred to other situations, as another
amplifier of the same kind would produce another noise signal, 4(f). The first
amplifier would also never repeat the noise signal 21{f), so we can do very little
with an output signal ealculated from i,

The solution to this problem is found not by considering individual random
signals, but instead by analysing the process that produces the signals. In our
example it means that we should derive general statements about the noise be-
haviour. Of course, it is impossible to know the noise signals in individual ampli-
fiers in advance. Instead, the typical noise power can be given, for example. This
has two significant advantages:

s the given noise power is & deterministic preperty which van be caleulated in
a normal way,

e it is the same for all amplifiers of & particular model.

We peed to introduce some new terms to extend our discussion to general random
signals, A process that produces random signals will he called a rendom process.
The entirety of all random signals that it can produce is called an ensembie of
random signals. Individual randem signals (e.g., 21(t), (), (1) in Figure 17.1)
are called sarnple functions or realisations of a random process. ' We will concentrate
on the random process that produces the signals as only it gives information on
all its sample functions.
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To characterise random signals deterministically, we use stafistical quverages
also called just averages. They can be classified into characteristics of random
processes which hold for a complete ensemble of random signals (expected value},
and time-averages, which are found by averaging one sample function aleng the
time-axis. Tn the next section we will deal with expected values and time-averages.

17.2 Expected Values

17.2.1 Expected Value and Ensemble Mean

Several different sample functions of a process are represented in Figure 17.1. We
can imagine that they are noise signals, that are measured at the same time on
various anplifiers of the same model. As expected velue (also ensemble mean) we
define the mean value that is ohtained at the same time from all sample functions
of the same process:

g
Bix(t)} = ,P}E{:‘; N Z 2ty ) (17.1)
' =1

As we can obtain different means at diffevent times, the expected value is in general
time-dependent:

E{x(t)} # Bla(tz)) . (17.2)
In Figure 17.1 it can be observed that the mean of the functions
x1{t), xa{t}, - - -, x;(t) takes another value atb time [y than at time t;.

Since the averaging in Figure 17.1 runs in the direction of the dashed lines, the
expected value is an average across the process. In contrast, the time-average is
taken in the direction of the time-axis, and is an average along the process.

The definition of the expected value in {17.1) should be understood as a for-
mal description and not as a wmethod for its calculation. It says that it should
be determined from all sample functions of a process, which is in praciice an im-
possible tagk. The expecled value identifies the wliole process, not just selected
sample functions. If we wish Lo actually evalute an expected value, there ave three
available methods.

e From precise knowledge of the process the expected value can be caleulated
without averaging sample functions. We need tools trom mathematical prob-
ability, however, that we did not want as pre-requisites.

s Averaging a finite number of sample fanctions can give an approxirmation
of the expected value from (17.1). This is equivalent to the limit in {17.1)
being ouly partially carried out. The approximation becomes more accurate
as more sample functions are included.
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Figure 17.1: Example of sample functions z(2)

¢ Under certain pre-conditions, that we will deal with later in more detail, the
ensemble average can also be expressed by the time-average for a sample
function.

Example 17.1

We use the example of a die to show the three methods for finding an exact or
approximate expected value:

» From kiiowledge of the process, which is the coraplete symmetry of the die,
we can say that every number has the same probability of appearing, so the
expected value is:

142 43+4+546
- =

E{z(t)} = 35,

As the die's symmetry does not change, the expected value is the same for
any time £,

» If we repeat the procedure with many dice whose syminelry properties we
do not know precisely, we can also approximately caleulate the ensemble
average Ly averaging all of the nutnbers on the die’s faces. As the expected
values can in general change over time, we should take the ensemble mean
for all dice at the same fime,
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e Changing statistical properties over time is not a concern for normal dice.
We can further say that the average for many dice at the same time will yield
approximately the same results as one die thrown repeatedly. The numbers
that come up are the discrete values of a sample funection along the time axis,
In this case, the expected value can: also be expressed by the time-average.

Before proceeding with the relationships between the ensemble-average and
time-average, we will discuss some more general forms of expected values.

17.2.2 First-Order Expected Values

The expected value E{z()} tells us what value to expect on average from a random
process, but it does not fully characterise the process.

Figure 17.2 shows sample functions of two random processes that have the
same (time-variable} average, but they clearly differ in other properties. The
sample functions of random process B vary much more around the average than
those of process A. In order to describe such properties we introduce the general
first-order expected value:

N
B{f () = Jim 5 - 5. (173)

In contrast to {17.1), z(4) is here replaced by a function f(xz({)). By choosing
different functions f, different first-order averages are obtained. The reason why we
uge the term first-order expected values is because they only take into account the
amplitudes of the sample functions at one point in time. We will soon learn about
higher-order expected values, where the values at more thau one time are combined
together. The mean according to {17.1) is contained in (17.3) for f{z) = 2. It is
also called the linear overage and is denoted by E{z(t)} = p, ().
For f(z) = x? we obtain the quadratic average:

N
B0} = Jim <> 0. (17.4)
=1

We can use it to describe the average power of a random process, for example, the
neise power of an amplifier without load.

The square of the deviation [rom the linear average is also important. It is
obtained from (17.3) for f(r) = (z — ,)* and is called the varwance:

E{(a(t) - m()?} = 02(1). (17.5)
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random process A random process B
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Figure 17.2: Randon processes 4 and B with a differing distribution between the indi-
vidual sample functions

Teking the positive square root of the variance gives the standard dewalson
o:(t), Variance and standard deviation are measures for the spread of the am-
plitude arcund the linear average for a random signal. The random process A in
Figure 17.2 clearly has a lower variance than random process B,

The linear average and the variance are by far the most frequently used first-
order cxpected values. When combined with second-order expected values they are
sufficient to characterise many common random signals, For general random sig-
nals it is possible to define mare first-order expected values by choosing a different

Flr) in (17.3).

Example 17.2

A gencral characterisation with first-order expected values is obtained by
putting
f(a) = e(0 — )

mto (17.3) and determining the expected value dependent on the threshold ©. We
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thus obtain the distribubion funciion
P (0) = B{e(® — 2(1))} .

It reburns the probability that z{#) is less than the threshold @. It is depicted in
Figure 17.3 for the die from Example 17.1, The derivative

L

t 2 3 4 5 6 @

Figure 17.3: Distribution function for the numbers on a die

dlczl:f{.'} (8]

46 =: Pe(t) (e)

is called the probability density function of the random signal x at time £ LFrom
Py (8] or puyey(0), all first-order expected values can be caleulated:

E{f(z(£))} = / F(O)pa ()00

For the die from Figure 17.3, this yields a linear average pt,(t) = 3.5, as in Exam-
ple 17.1.

17.2.3 Calculating with Expected Values

Expected values can be dealt with in a similar way to functions, if the correspond-
ing calculation rules are observed. There are actually only two simple mies to
remember:

e The expected value E{-} is a linear operator for which the principle of su-
perposition holds

E{an(t) + by(t)} = aB{a(t)} + bE{y(t)}. (17.8)

Here ¢ and & can also be deterministic functions of time a(t} and b{t).
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= The expected value of & deterministic signal d{t} is the value of the signal
itself, as d(t) can be thought of as a realisation of a random process with
identical sample [tinctions:

E{d()} = d(t). (17.7)

Example 17.3

We use both rules (17.6) and (17.7) to express the variance with the lincar
average and square jnean:

a.2(t) = E{((t) — m(1))’} = E{o?(f) - 2e(t)u.(t) + ps (1)}
= E{z2(t)} — 2. (DE{z(O)} + p.*(t)
E{a?(t)} - pa*(t) (17.8)

It is therefore sufficient to know only two of the three quantitics - the Hnear
average, the square average and the variance — and then the third can be calculated.
The relationship between them is often used in practice to caleulate the variance.
If N sample functions are available, 2;(¢) and z2(t) are summed and the result is
divided by N. The guantity z;(¢) — g (¢) cannot be averaged because in the fizst
pass, the linear average y,(#) is not yves available. A second pass can be avoided
by calcuiating the variance in accordance with (17.8). -

17.2.4 Second-Order Expected Values

First-order expected values hold for a certain point in time, and therefore they
cannot register the statistical dependencies that exist between different points in
a signal. With second-order expected wvalues, however, this is possible. They link
the signal at two different points:

E{f(z(tr),2(t2))} = [l Zf AGYEACIP (17.9)
NS
The auto-correlation function {(ACF) is an important second-order expected
value, which is obtained fram (17.9) for f{p,v) = un

Pertis t2) = Bla(tr) x(t2)} - | (17.10)

It describes the retationship between the values of a random signal at times #;
and t3. High values for the auto-correlation function indicate that x(t) at times #4
and £y take similar values. For ) = ts, the auto-correlation function becomes the
inean sqguare

wea(tr t1) = E{2%(t1)}. (17.11)
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Example 17.4

Figure 17.4 shows which properties of a random signal are represemted hy
second-order expected values. The random processes A and B have identical first-
order expected values, in particular their distribution function P (0) = Py, (0)
{Example 17.2). The sample functions of random process A change much mors
slowly with time, however, than those of process B. We can therefore expect a
much greater value of auto-correlation function @ye(%),£2) for A’s neighbouring
values £ and iy than for the auto-correlation function w2y, (t;,t9) for B. This is
confirmed by the measured ACFs shown in Figure 17.5,

random process A random process B

Nt
M
x(#)

P

Fignre 17.4: Hlustration of two random processes 4 and B with identical first-order
expected values and differing second-order expected values

Expected values of first~ and second-order arve by far the mosi important in
practical applications. Many descriptions of stochastic functions rely solely on
these two. However, advanced models of complicated random processes resort
also to higher-order expected values. This emerging branch of signal analysis is
therefore called higher-order statistics.

17.3 Stationary Random Processes

In Section 17.2.1 we considered various possible methods for ealeulating expected
values. Omne of these was expressiug the ensemble mean with the time-average.
The conditions under which this is possible will be explained in this section.
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tp)cx(r].? fz) ‘P}.}-(rl, IQ )

7 v
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Figare 17.5: Anto-Correlation functions @, (f1,42) and wy{f1, t2) of Lhe random pro-
cesses A and B in Figure 17.4

17.3.1 Definition

A random process is called statronaryif its stalistical properties do not change with
time. This appears to be the case for the two random processes in Figure 17.4,
while in Figure 17.2, it is clear that the linear axpected value changes with time.

For a precise definition we start with a second-order expected value as in {17.9).
If it is formed from a signal whose statistical properties do not change with time,
then the expected value does nol change if both time points £; aned o are shifted
by the same amount Al

B(f(a(ts). (i)} = B{f(2(t + At).o(tz + AN} . (17.12)

The expected value does not depend on the individual time points ¢, and 2, but
instead on their difference. We can use (his property to define stationary.

Definition 23: Stationary

A rondom process is stationary if iis second-order vopected values only depend
on the difference of observed trme points v =1) ~ ta.

In (17.7) we considercd deterministic signals as a special ease of random signals,
for which the linear expected value is equal to the current function valye, Thisg
means that deterministic signals can only be stationary if they are constant in
time. Any deterministic sighal that changes with time is therefore not stationary.
The same holds for finite random signals, as a signal thal is zero before or after a
certain point in time changes its statistical properties and cannot be stationary.
From this definition for second-order expeected values we can derive the
properties of first order expecied values. As first-order expected wvalues for
fla{ga ), x(t2)) = g(x(t))) are a special case of second-order expect values we find:

Blo(r(t))} = E{glz(t, + At)}. {17.13)
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That means that for stationary random processes, the first-order expected values
do not depend on time. In particular, for the linear average and the variance:

pa(t) = po, 027(1) = 0,°. (17.14)
The auto-correlation function can be expressed more simply with z =#; — £:
B{a(t)e(t)} = E (a(t)alt — 0} = B {2tz + 0262} = palt) . (17.15)

The aubo-correlation function gg.(7), that we introduced in {17.15) as a one-
dimensional function is not the saie function as pg{t;,f2) in {17.10}, which iz a
function of two variables, ¢, and ¢3. The two ., are linked for stationary random
signals (17.15}. If the stationary condition only holds for

flz(t), x{t2))
f(x(t), 2(t2))

however, aned not for general functions f(-,-), then the random process is called
weak stafwonary. Also for the Hnear average, the variance and the auto-correlation
function of weak stationary processes (17.13}, {17.14), and (17.15) hold. We can
thus obtain the following statement: for a weak stationary process the linear av-
erage and the correlation properties contained in the auto-corrclation function are
constant with time. The concept of weak stationary processes is usually used in
the context of modelling and analysis of random procesess, where it is often a
pre-condition. When only the linear average and auto-correlation function are
considered, weak stationary is a less limiting condition that that of {strictly) sta-
tlonary processes for all expected values of first- and second-order.

2(t)) 5(t2) (17.18)
2(t), (17.17)

i

i

Example 17.5
We take a random process with linear average B{x(t)} = 0 and the ACF

Pax (b1, 2) = si{ty — £2) .
This randem process is definitely weakly stationary, as we can write its ACF as
Pa (€} = 8i(2)

and its linear average p, == 0 is constant, Thus {17.12} is fulfilled for the func-
tions (17.16), {(17.17). The variance of the signal is

72 = F{z®} = .. (0) = L.

With the given information we cannot tell whether or not the rundom process is
stationary in thoe strict sense,
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Example 17.6

The weak stationary random signal x(t) from Example 17.5 is modulated by a
deterministic signal m(t) = sinwt, s0 a new random signal y(£) s created:

y(1) = m(t)a(t) = sin(wi)a(t).
The Yincar average of y(t) in accordance with (17.6), is
E{y(1)} = m(t) - Ela(t)} =
The ACF iz
Pyt te) = E{y(t)y(tz)} = Bdm(t)a{t ym{t2)x(t=) }
= m{ty)m{t2) ozt 2} .

@re(ty, t2) only depends on the difference between the observation times 7 == £; —#a
{see Example 17.5), but this is not true for

mfty)m(le) = sinwty sinwts .

Therefore y(¢) is neither stationary nor weak stationary. For example, the mean
square at time ¢ = J- is

w ) LT T -
P (ga QE) = sin o sin o si(0) = 1.

but at time ¢ =0, it is

Py (0,0) = sin{0} sin{0) - 8i(0) = 0.

17.3.2 Ergodic Random Processes

We wiil now return to the question of the conditions under which we can express
the ensemble averages by the time average. We first define the first-order time
average

17 . .
Fa®) = jim_ o [ EOL (17.18)

and the sccond-order time average

flai(®), 2t — 7)) = hm / Fla; () wy(t — 7)) di (17.19)
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The npperently cumbersome limit T — oc¢ is necessary because the infegral
o0

§ F{)dt does not exist for a function f of o stationary random signal. The
D

average is therefore formed from a scction of the signal with fength 27" and this
length is then extended to infinity.

If the time-averages (17.18), (17.19) agree for al! sample functions of & random
process and are also equal to the ensemble average, we can then express it with
the time average of any sample lunciion. Random processes of this kind are called
ergodic.

]b_fgﬁnitioll 24: FErgodic

A stabionary random process for which the time-averages of each function wre
the same as the ensemble average @ called an ergodic random process.

It must be proven for individual cases whether or nor a stationary random procesy
is ergodic. Often this proof cannot be exactly carried out, and in these cases it can
be assumed that the process is ergodic, as long as no indications to the contrary
occcur. The big advantage of ergodic processes is that knowledge of au individual
sample function is sufficient to calculate expected values with the time-average.

Similar to stationary processes, there is also a restriction for certain random
processes. If the ergodicity conditions only hold for

Flalty)xit)y =
f(iﬂ(tl), »‘3{32))

alty) x(t2) {17.20)
x(t1) {17.21)

H

but not for gemeral functions f(-,-}, the random process is then wesk ergodic.
Like the idea of weak stationary, it is used for modelling and analysis of random
processes with minimal restriction.

Example 17.7
A random process produces sample functions
23{t) = sin{wot + ;) ,
where wy is a fixed quantity, but the phase p; is completely random. All phase

angles are equally likely,

The process ig stationary because the second-order expected values {17.12) only
depend on the difference between the observation times. The ACF, for example,
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is
Poaltitz} = B{sin{wats + p)sin{wolz + @)}

2

1
= gjsin(wgh + @) sinf{wola + ¢)de
n

1 1
=3 cos{woty — wpte) = 3 coswpr mit =iy, — 1y,

The integral averages all phase angles hetween ) and 27.
The process is also crgodic because the thme-average (17.19) agrees with the
ensemble average. We can verify this with the example of the ACF, where

T—oo

T
) T |
i)zt — ) = lim oF ]Siﬂ(tﬂgﬁ—}— ;) sin(wolt — z) + ooy Yt
=T

N {m42mp)fw
lim 1 Z inwot + 1) sinfwo(t — ©) @
Neoo IN + 1 . sin{wt + ;) sinf{wo(t — ) + ;)dt
'”m_N(—fr-’riZ'n'p)fw

i

= ~ COSWGT.
2

If the random process also has a random peak value # in addition to the random
phase ¢, so that

() = @ sin{wpt + ),
it is indeed stationary, but not ergucic. For example, while E{z%(¢)} = E{3%},

the fime-average of the square of a certain sample function ¢ is, however, z3(£) =
12

€.
2%
.

17.4 Correlation Functions

Now that we are comfortable with expected values and have learnt ways of caleu-
lating them, we can return to the task from Section 17.1 at the beginning of this
chapter. We want to describe the properties of random siguals with deterministic
varisbles. This will new be done with first- and second-order expected values. We
start with ergodic random processes if needed, so that the expected values can be
expressed and evaluated with time sverages.

The most, itnportant expected values are the linear average, the auto-correlation
function and a generalisation derived from it, the cross-correlation function.
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For the linear expected value, in accordance with (17.1), {17.14) and {17.18)

we ohtain
T

Ela(t)} = p, =2(t) = Jh_tgr }Ef w{E)dt (17.22)
-7

As ergodic functions are stationary, the linear avevage g, is (like all other first

arder expected values) independert of tine. From Definition 24 it is equal to the

time average x(f). As the time average can in this case be formed from any sample

funection, the sample fanction in {17.22) is no Ionger marked by an index (compare

(17.18}}).

We will get to know the other expected values better in the following sections,
in particular the auto-correlation and cross-corrclation functions. As we only use
second-order expected values in the form of (17.20), weak ergodicity will he a
sufficient pre-requisite.

First we consider correlation funciions of purely real signals. The results will
later be extended to complex gignals.

17.4.1 Correclation Functions of Real Signals
17.4.1.1  Auto-Correlation Function

We have already seen that the auto-correlation function of a weak stationary signal
can be expressed by the time difference of the two multiptied signal values (¢compare
(17.153):

wenlT) = Ef{x{t)e(t - 0} . (17.23)

The product z(f)z{t — ) can in general take positive as well as negative values.
Depending on which of the two proedominate, the expected value is positive or
negative, For 7 = 0, however, z?(f) is never nogative and must also be greater
than for anv other value of r. That means that the anto-corrclation function
wer{ T) has a maximum value at 7 = (). We can show this easily, by considering

B{((t) — 2(t — 2D} = 020(0) = 200a(2) + 222 (0) 2 0 (17.24)
wlich is always positive, and which leads directly t0 w,.(7) < ¢ (0], From
E{{x(l) + 2t — ©)1*} = 92 (0) + 2200 (7) + @ (0) = 0 {17.25)

we know that there is also a lower bound ,,(2) = —,,{0). This lower bound
can be made narrower for signals with non-zero means, Ly considering

2(8) = 2{t) — o, {17.26)
and the ACEF

eaa(T) = B{{a(t) — ) (2t - ©) = )} = @uanl 7) ~ 113 - {17.27)
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If we nse (17.25) on pgz(z), the ACF of the signal is @ {2) > —©z2(0) + p2 =
Bea(0) + 202, The value pqa(0) can also be expressed by the variance o2 and the
linear mean p,, in accordance with (17.4);

‘“‘r’-":ﬂx(o) + 2.“3: = “Ui + F)i = ‘Pm:c(f) = (P:c:c(o) = Ji -+ J“"f: . (17'28)

In the relationship . () < (0}, the equals sign represents the case where
x{t} is a periodic function of time. If the shift by z is exactly equal te a shift
by one period or a multiple, then z(f)x(t + z) = 2*(t) and also ., {7} = @2 (0).
There ig no shift, however, between x(f) and z(t + «} for which the expected value
becomes E{a(t)x(i+ )} > B{z?(t)}. If such an effect is observed when measuring
an ACF, this means that the pre-conditions for a weak stationary process are not
there.

A further property of the auto-correlation function is it symuetry with respect
to ¢ = 0. As Lthe value of ¢p.(z) only depends on the displacement hetween the
two functions in the product z(¢)x(t + r} we can substitute ¢ = £ + z and this
yields

E{x(t)z(t + o3} = E{2(t’' — 0)a{t')} = E{a()x{t’ — 2)} . (17.29}

The symmetry property
‘303:‘1:(3) = 5033;(—2') (17.30)

is then immediately obtained.

For the behaviour of the auto-correlation function for ¢ — oo, ne general
statements can be made. In many cases, there is no relationship between distantly
separated values. These values are then said to be uncorrelofed.

This property is expressed in the expected values of the signal, such that the
second-order expected value is decomposed into the product of two first-order
expected values:

E{xt)z(t - o)} = E{z(t)} B {z(t - 7)} |zt -— oo (17.31}
Asg the linear expected value of a stationary signad does not depend on time,
E{a(t)} = B{a{i — o)} = e (17.32)
and therefore for the auto-correlation function
perlD) = g2 |2 = 0. (17.33)
For signals whose values are uncorrelated if far apart, the only relationship between
them is the (time-independent) linear average 1.

Figure 17.6 shows a typical auto-correlation function with the properties just
discussed:
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maximum valus: 0oz (0) = G2 442 > () | (17.34)

lower bound: 0, (7)) = —0d + (17.35)

ByIrnetry: el T) = pp{—1) (17.36)

uncorrelated for jo| — oc r;fm OralT) = i (17.37)
|

The negative values of the auto-correlation function in Figure 17.6 show that for
these values the shift z of the expected value E{x(t + r)x(£)} is negative. It
means that with a separation =, x(t + z} and 2(#) are expected (o have different
signs. Like large positive values of the auto-correlation [unction, large negative
velues also indicate a strong relationship betwoeen the values of @(f). The lower
bound —o2 + 12 is not reached in this example. The first three properties (17.34)

. 2 Px(T)
maximum
att=0 "\sz + 2

~ ¥

lower bound *sz + sz

Figure 17.6: Example of an auta-correlation function

- (17.36} hold for all stationary random signals 2(1), bui {17.37) only holds when
distantly separated values do oot correlate. In Example 17.7, (17.37} does not
hold, for example.

Example 17.8

1o Example 17.4 we considered two random proeesses 4 and B whose sam-
ple functions clearly have statistical interdependencics. Under the assumption
that these processes are alse stationary for the section shown, we can charac-
terise them with their auto-correlation functions ipe.{z) and @y, (7), shown in
Figure 17.7. They are illustrated in Figure 17.7, and are found simply as cross-
sections through @.5(t1, ta) and @y, (11,42} in Figure 17.5, along the {y or #y axis.
The auto-correlation function .. {r} in particular is very similar to the auto-
correlation function from Figure 17.6. In this cage, however, the linear average s
wero, which s also vigible from the sample functions in Figure 17.4. The signif-
icantly [aster changes in the time-behaviour of randoni process B in Figure 17.4
are also expressed by a faster decay of the autocorrleation function ¢y, (7} from
its maxiznum value in Figure 17.7. The maximum value ,,(0) itself is equal to



420 17. Deserihing Random Signals

the corresponding value v, (0) of random process A, as it was already assumed
that the first-order expected values are equal. Additionally, y(#) clearly has a zero

mean. Both ACFs do not reach the lower limit —o2 4 p2 = ~o2 + p2.
random process A random process B
Q}L"(T) (P*ﬂ;(r) :
e ? ,
o | N
T T

Figure 17.7: Auto-correlation fanction of the random processes A and B from Figure 17.4

Example 17.9

Figure 17.8 shows the auto-correlation tunction of the speech signal for a male
voice. The distinet negative correlation at a shift of © = Bms points towards the
fundamental frequency. As the negative correlation occurs at a shift of one half-
wave, this indicates a fundamental of about 100 He. For larger shifts, the ACF
does not approach a constant vatue. In fact, vowels are periodic over a large length
of time. For very large ¢, however, we find ¢..{¢} = 0 because the speech signal
has g zero mean.

@.,(T)
f
t

o et /x\, A4 SLNS
~30 =20 =10 } 10 20 30 7 imsl

Figure 17.8: Auto-Correlation function of a speech signal

17.4.1.2 Auto-Covariance Function

Introducing expected values should enable the use of deterministic funetions to
replace the random signals themselves in the system description. That means
we could carry out the same operations that we did on deterministic input and
output signals, the most important being the Fourier transform. If the function of
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time can be absolutely integrated (see Chapter 9.2.2), this is sufficient condition
for the existence of the deterministic functions. This property is not given for
auto-correlation functions, however, if the linear average . is non-zero,

In order to overcome the difficulty stated above, the lnear average can be
removed [rom the outsct and instead of the signal z(t), the zero mean signal
(2(t) ~ p) can be considered. Its aunto correlation function is called the auto-

covarrance functton of x(t) and is denoled by ¥, ()

e (2) = B{(a(t) — )t — ©) — )} (17.38)
Using the caleulation rules from Section 17.2.8 we obtain
Waa (7)) = Qe (T) — p:f._ , {17.39)

just as in (17.8). The properties of the suto-covariance function correspond to

those of the auto-correlation function for zero mean signals.

maximal value: 03 = a0} = () (17.40)

lower bound: Wz} 2 —a2 = ~(0) (17.41)

symunetry: Yra(7) = tg(—7) (17.42)

uncorrelation for o] — oo |zljim Puz(T) = 0 (17.43)
Al Eacds al

17.4.1.3 Cross-Correlation Function

The anto-correlation function i given by the expected value of two signal values
that are taken from ene random process at lwo different times. This idea can
be extended fo signal values from different random processes. The corresponding
expected value is called the cross-correleiion function. To represent its properties
correctly we have to extend the earlier defintions of second-order expected values,
stationary and ergodic random processes to deal with {wo random processes. A
second-order gowmt expected vakue is the expected value of & function fle(ty). w{t)}
formed with signals from two different random processest

N

E{f(elts),plte))} = Jim %} 3 Frto)wltz) (17.44)
pu=

For the cross-correlation function @.,(f1,42), it holds in general that (compare
(17.10}):

Pay(ty, f2) = £{z(t1) - ylta)} - (17.45)

The cross-correlation function is denoted like the auto-correlation hunction, but
the second random process is indicated by another letter in the index.
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Next we extend the idea of stationary from Definition 23 to cover two random
processes. We call two random processes jownt statfonary, if their joint second-
order expectod valies only depend on the difference 7 =ty — £2. For joint atation-
ary random processes the cross-correlation funetion then takes a form similar to
(17.15):

Cou(T) = Elxlt + ) y{t)} = E{=() vt - ©)} - {17.46)

Finally we introduce the second-order jowni time-average

i wlt o) = Jim o /f (8), uilt — £))dt (17.47)

and call two random processes for which the joint expected values agree with
the joint time-averages joint ergodic. There are also weak forms for joimt sta-
tionary and joiut ergodic random processes, where the corresponding conditions
are only fulfiled for f(z(t1),y(ts)) = w(t)ylta), Fle(h)y(t) = z(t) and
Flat) yit)) = ylt2).

The cross-correlation funection performs a similar function for two random pro-
cesses that the auto-correlation function dees for one random process. It is a
measure for the relationship of values from the two random process at two times
separated by r. The extension to two random processes canses some differences
Lo the anto-correlation function.

Fist of all, two randomn processes can be uncorrelated not only for large time-
spans but also for all values of #. Their cross-correlation function is then the
produet of the linear expected values p, and p,, of the individual random processes:

Puy(T) = pa iy VT, (17.48)

There is also the case that two random processes are not uncorrelated for all
values of 7, but at least for |r] — oo

©ay(t) = py gty for [} — 00, (17.49)

Furthermore, the cross correlation funciion does not have the even symmetry
of the auto-correlation function, as from {17.46) and swapping = and y, we only
obtain

Pyl T) = Pya(—T) # Puy(—7). (17.50})

The autg-correlation function ..{z} can be obtaimed from the cross-
correlation function way, (7} as a special case y(t) = z{#). Then using (17.50),
we can find the symmetry property (17.36) of the aunto-correlation function.
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17.4.1.4 Cross-Covariance Function

The cross-correlation function can also be formed for zero-mean signals (2{t) — p.)
and (y{!) — p,) and this leads to the cross-covariance function (compare Sec-
tion 17.4.1.2):

Pay(z) = E{{x(t) — pa)y(t — 0) — )} (17.51)

As with the auto-covariance funetion in (17.39), the calodation rules from Sce-
tion 17.2.3 yield the relationship between crogs-covariance function g,,(r) and
cross-correlation function @, ()

Yoy () = Puy{T) — trapty (17.52)

17.4.2 Correlation Functions of Complex Signals

When we introduced the various correlation functions in Section 17.4.1 we stuck
to real signals for the sake of simplicity. In many applications, however, complex
signals will appear as in the signal transmission example (15.2}. [n this section
we will therefore be extending the use of correlation functions to complex random
processes, These are random processes that produce complex sample fanctions.

"To introduce the correlation functions for complex signals we proceed differ-
ently to Section 17.4.1. There we started with the auto-correlation function and
introduced the cross-correlation function as a generalization that contained other
correlation functions {cross-covariance, auto-correlation, auto-covariance) as spe-
cinl cases.

Here we start with the cross-correlation function for complex signals and derive
the other correlation functions fror it. To do this we must assume that z(f) and
y{t} represent complex random processes Lhat are joint weak stationary.

17.4.2.1 Cross-Correlation Function

There are several possibilities for extending the cross-correlation function to cover
complex random processes. We will choose a definition that allows a particularly
straight forward interpretation of the crosspower spectrum. There are different
definitions in other books (for example [19]}. According to (17.46), we define the
eross-correlation function for complex random processes as

‘P;r:y(r) = ]i.:{;l?(t + T) y* {t}} ’ (1753)

The only difference to the definition for real random processes is that the
conjugate complex function of time ¢ (¢} is used. For real random processes (17.53)
becomes (17.46}.
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In general, the cross-correlation function for complex random proceszes is also
neither symmetrical nor commntative:

‘Pn:y( )= 99;; (—z) # 9‘93;1(3") . (17.54)
¥or uncorrelated random process we obtain
r{) = Edx{t+ o)} E{y" (O} = papy, Yz (17.558)

17.4.2.2 Auto-Correlation Function

The auto-correlation function of & complex random process can be obtained from
the cross-correlation function as in {17.53), for y(£) = z{¢):

@ral(7) = Efa(t + )77 (D)} . (17.56)

As in the real case, the auto-correlation function consists of a symmetry rela-
tiom af the transition from z to -z, We can obtain it directly from (17.56) by
substituting ¢’ = ¢+ z and by using the calculation rules for conjugute complex
quantities:

il

Elz(t+ oux™(t)} = E{a()z*(t ~ 1)} = E{l=(t' - 0a™ ("]}
B {alt — e N = (7). (1757)

PrelT)

Il

or more concisely

Pa () == Pael—7) (1?'58)

The conjugate symmetry here can be recognised from {9.47), and is expressed as
an even real part and an odd imaginary part ol v, (). For real random processes
the imaginary part of @...(7) ig zero and the even symmetry holds according to
(17.36). In auy case, the odd maginary part disappears at z = {, so for complex
random Processes, (1) is alse purely real. With the same reasoning as in
Section 17.4.1.1, it holds that the magnitude of ¢, {7} is maximal at =0, and
it can be expressed by the variance af; and the mean jig:

o (7) S 9x(0) = E{2(D)e™ (1)} = 0F + poppy, = 0 + fpaf*. (17.59)

While the mean g, is in general complex for a complex random process, the
variance is always a veal qnantity

o2 = Ed[e(t) — pa 2 () — pa]} = B { 2t) - pe P}, (17.60)

ag the square expected value is formed in this case with the magnifude squared.
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17.4.2.3 Cross-Covariance and Auto-Covariance Function

From the cross-correlation function and the auto-correlation funclion we again
use conversion to zero-mean signals (iw(t) — p. ) and (g{(t) — p,) to obtain the com-
plex cross-covariance and complex auto-covariance funetions. The cross-covariance
function is given by

Yo (2) = B{G(t 4 7) ~ o} ult) = 1)) - (17.61)

where the relationship

’(;’x;-'ﬂy( )= {sz(z} - ;usc."‘i; (17.62}
with the eross-correlation function holds. The cross-covariance function is also
neither symretrical nor commutative:

ifb:uy(f) = 'ﬂ‘{";g: {(—7) # ?:":’ym(r) . (17.63)

H boih random processes are not correlated for large timespans z, the cross-
covariance function approaches zevo for |z| - oo:

e {ty=0 f'wr jzi —o0. (17.64)

The auto-covariance funclion ¥, { 7} comes from the cross-covariance function
Wy () where y(8) = (£). Tts relationship with the auto-correlation function s

D () = Fan () = fto thy = Paa(T) — gﬂxlz {17.65)
with the conjugate syminetry
W7y = 4, {— 7). {17.66)
The maximum vatue at z = 0 is equal to the variance o2:
P (0) = 0% . (17.67)

The auto-covariance function also disappears for |t} — oa il the random process
no jongey correlales when z is large:

() =0 for o — . {17.68)

17.5 Power Density Spectra

Describing random signals with expocted values and in particular with correlation
functions showed that the properties of random signals can be expressed by deter-
ministic quoatities, Instead of & random time signal there would be, for example,
the deterministic auto-correlation function which is likewise a deterministic quan-
tity. In the past chapters we saw that describing signals in the frequency-domain is
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particularty useful, and often leads to glegant methods for analysing LTT-systems.
We would therefore like to have a deterministic description of random signals in
the frequency-domain as well,

The idea that first comes to mind is describing sample functions x;{¢) of a ran-
dom process as expected values instead of considering them as random signals, but
this idea is actually unsuitable. Stationary random signals can never be integrated
ahsolutely (9.4), as they do not decay for |f] — oo, Therelore the Laplace integral
cannot exist and the Fourler transform can only exist in special cases. Instead
of transforming into the frequency-domain and then forming expected values, we
form the expocted values in the time-domain and then transfer the deterministic
guantities to the frequency-domain. This idea is the basis [or the definition of the
power deusity spectrum.

17.5.1 Definition

We start with the auto-correlation function or the auto-covariance function of a
weak stationary random process and form its Fourier transform:

Pe(qw) = Floaa()} (17.69)

Tt is also called the power density spectruwm of the random process, The power
densily speciram characterises statistical dependencios of the signal amplitude at
two different points in time. Correspondingly, the Fourier transform of a cross-
correlation function can be formod giving the cross-power density spectrum:

Dy liw) = Flpay(2)}. (17.70)

P, (jw) is also called the cross-spectrum.

Example 17.10

In Example 17.7 we cxamined a staitionary random process which produced
sinnsoidal sample functions #;{¢) = sin{wopt + ;) with random phase y;. For these
samnple functions it is somestimes even possible to give the Fourier transform

Xi(jw) = [Tf5 - wg) ~ T {w -+ wu]](ziw/u)mp! .

Iis linear average
B{X(yw)} =

does not say much, however, and the mean square

E{Xi(gw} X} (jur)}
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cannot be given because of the delta impulse. In the besi case we can form
E{|X:(jwit} = 7é{w ~ wo} + mé(w + wn)

as a deterministic description of the random process. Forming the expected values
first in the time-domain and then transforming them yields the power density
spectrum

. T m 1
@ (o) = 55{U~’ ~wn) + Ed(w +wo) e-0 pplr)= 5 cosanT

as the Fourler transform of the ACFE. It Is similar to B{{X,{ju)]} and ikewise
indicates that the random signal only contains frequency components at +wy.

17.5.2 Power Density Spectrum and Mean Square

The mean square of & randemn process can also be calenlated directly from the
power deusity spectrum. First, the auto-correlation function is expressed as the
inverse Fourier transform of the power density spectrum:

. , N
oeel2) = F U, ()} = / B (jw)e’™ T, (17.71)
an J_
As the mean square is equal to the value of the anto-correlation function at

z == {}, we can obtain the relationship between the power density spectrum and
mean square by putting ¢ = 0 into (17.71):

o0

E{2(0)?) = ¢re(0) = o [ @y} (a7.72)

am — 00

The mean square is therefore equal to the integral of the power deusity spec-
trum, multiplied by a factor 1/27.

area is equal to the
mean square of the
signal ("power”)

Figure 17.9: The area under the power deusity spectrum @...{3w) of a signal x(t} is
proportional to the mean square of the signal
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We saw by introducing the mean squarc into {17.4) that it can also be used
as o measure of the power of a random process, for example, as uoise power of
random interference. Relation (17.72) suggests the interpretation thal the power
density speesrum describes the power distribution over varions frequencies for &
random process, We will return to this idea in Chapter 18.2.6 where it wiil be
refined and made more precise.

17.5.3 Symmetry Properties of the Power Density Spec-
trum

The symmetry properties of the power density gpectrum come directly {romn the
conjugate symmetry of the auto-correlation function (17.58). As the real part of
the auto-correlation function is an even function, we kuow from the symmetry
properties of the Fourter transform (9.61) that the power density spectrum must
be purely real:

Im{$,.{jw)} = 0. {17.73)
It also holds if «(#} describes a random processs. In Chapter 18.2.6 we will show
that
holds in the gencral case.

The cross-power density spectrurn and the cross-correlation function show no
particularly interesting symmoetries, just

Py (jw) = O3, (Hw) (17.74)

from (17.54).
For real randora processes a farther syminetry property can be obtained, how-
ever, The auto-correlation function is then a real and even funciion

oo (T} = @uu(~— 1), {37.75)

in accordance with {17.30). Its Fourier transform {9.61) is likewise real and even,
and the power density spectrin of a real random process is therefore an even
function:

By (Ju) = Ppg{juw) - (17.76)

For the cross-power density spectrum of two real random processes we obtain the
conjugate symmetry
Poyliv) = EL (—jw) = Byu(—jw) = D, (jw) (17.77)

from (17.74) and (9.61). As the eross-correlation function is in general not sym-
metrical, the cross-power density spectrum of a real random process is also not
real. Just like the CCF, the cross-power density spectrumm is not commutkative,
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Example 17.11

As an example we will consider {he power density spectrum in Figure 17,10
for the speech signal from Example 17.9. As expected, it is real and positive, and
as the speech signal is, of course, itself real-valued, the power density spectrum
is alsn an even function. In Figure 17.10 therefore, ouly the positive frequencies
are shown. The concentration of power density in the 100 Hz region iz clearly
recogniseable. This result agrees with the rough estimation of the fundamental
speech frequency in Example 17.9.

P ()

il N
o “""‘# } (\Im@“mi..-ﬂ'mﬂi\’r_:\_}b{' A"'"fuh E Fl I 3

T T T

Q}‘ .
0 10 500 1000 5 [Az]

Fignre 17.10: Power density spoctrum of the speech signal from Figure 17.10

17.5.4 White Noise

Many interference sources, like amplifier noise or radio intexference, can be de-
scribed by random processes with a powoer density spectrum that is almost constant
aver a large range of frequencies. Such random processes are often approximated
by an idealised process, whose power density spectrum is not frequency dependent:

(I)Rﬂ (j"w) = N{) B (1778}

Since all frequencies occur evenly, the idealised process is called white nowse. The
name iy derived from the term ‘white light’, which represents a uniform mixture
of every colowr in the spectrum.

The auto-correlation function of white noise can only be represented by a dis-
tribution, the delta impulse:

@anl(z) = F Y No} = Ny 8(z). (17.79}

This means that samples of white noise taken at different times do not correlate.
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From: the representation of white noise in the time-domain (17.79) and in the
frequency-domain (17.78), we see that a white noise signal must have infinite
power:

sy
&'gnn([]) = ‘2}1'1_'" j ﬁr{}d&-’ — O (]780)
— o

White noise is therefore an idealisation that cannot actually be realised. De-
spite this, it has extromely simple forms of power density spectrnun and auto-
correlation function that are very useful, and the idealisatiou can be justified if
the white noise signal is high- or low-pass Hltered, and the highest frequency com-
ponents suppressed. This leads to a refined model for random processes: band-
limited white noise with a rectangular power density spectrum

Ny for |w} < wpy,
By () = { P for el S (17.81)

0 otherwise

with a si-shaped auto-correlation function

wnn( Z’) =Ft {Nf} I‘I?-Ct( “ ) } = Ny L“;‘E Si(fwmax) (1782)

meax

and finite power
(Pnn(u) = I\T{]ETr—ai . (1783)

It characterises noise processes whose power is evenly distributed below a band
limit W Figure 17.11 shows the power density spectrum and the auto-
correlation function.

+ D, (jw) N D7)
0 Prmax
Ny 7
*—0 :
- L CREESS
e— S I £
Do O

Figure 17.11: Band-limited white noise in the frequency-domain and time-domain

17.6 Describing Discrete Random Signals

The concepts discussed so far for continuous random signals can easily be extended
to random sequences. As most of the reasoning and derivation is very similar,
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we will forego examining them in detail. However, we need o be aware of the
definitions of stationary and ergodicity as they apply to randoin sequences,
Stationary means in this case that the second-order expected valnes
E{fla[ki],v[ka])} only depend on integer differences & = ky — ky between the
digcrete time variables &y and kg,
The time-average, necessary for the definition of ergodicity, is given for sample
sequences of a discrete randomn process by

K
Ty = Jim_ z_k}iqi“i' S fail). (17.84)

k= — K

From here, the suto-correlation, cross-correlation and covariances can be con-
sidercd in the same way as for continuous randem processes. Instead of auto-
correlation and cross-correlation functions, we will he using anto-correlation and
cross-correlation sequences.

For the cross-power density spectrum of two discrete weak stationary random
processes, we obtain from the discrete-time Fourier transform the spectrun

Bay (1) = Fulipay ]}, (17.85)

periodic in 2. The power density spectrum of a diserete random process corre-
sponds to the case where y = 2.

Example 17.12

A weak stationary continuous random process &(t) is characterised by an ex-

ponentially docaying ACF

sa(z) = eI

Samples are taken at intervals T
xlk] = &EkT) ke Z.
The auto-correlation sequence is
Orz ] = B{afk + wla[k]} = B{#AT + «DVEKT)} = @za(nT) = 0Tl
The power density spectrum of the discrete random process is

1 — g 2w

Jﬂ = " o =
o (€)= Fulualrl} L+ g=2wal — 2p-woT poy ()

and is shown in Figure 17.12. It is positive, real and even, like the power density
gpectrurn of a continuous random process with real values. In addition, it is 2#
periodic. As the auto-correlation sequences g, [s] is yielded simply by sampling
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Figure 17.12: Power density spectrum of the discrete random process por

the auto-correlation sequences ¢zz(f), the power density spectrumn of the discrete
random process @, (e/?) is siinply the periodic continwation of the power density

spectrumn ®3;(jw), in accordance with (11.33)

. 1 52 £2
‘I.)JI(J!) = 5“;@}; (‘“{I_ﬂ) *J_LL(MQ_;TF) .

17.7 Exercises

Exercise 17.1
For which of the following ensembles might hold

1 & 1 47
a) lim_‘ﬁzm(t) zz'!-ii%oﬁ_:f/_,r“r‘(t)d for any i

T
frﬁ(f) di, for any ¢

2
b) llm —Zn (t) = ]n..m 2T
%a.rt by verb‘lllv formulating the condttxonq

£ Ensemble 1 0
Xoki) 4
xg(f) l I i _
. ,.r

Fngemble 2
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Ensemble 3 Ensemble 4

Ensembie 5: from Figure 17.1

Exercise 17.2

Diseuss which of the ensembles from Excercise 17.1 could be:
a) wenk stationary,
h) weak ergodic.

Exercise 17.3

Consider a random process @t} at the output of a CD-player where the sample
functions are produced by someone contimally repeating a ten second section from
a rock CD. Assume that it is the ideal case in which this has been happening for
an infinife time and the CD-player will go on playing infinitely.

a) How large are BE{x{t)} and x;(¥) under the assumption that the output has
no DC component?

b) Using the first-order expected valiues, discuss whelher the process could be
stationary.

¢) Using the first-order expected values, discuss whether the process could be
ergodic.

Exercise 17.4

Take swo uncorrelated random processes z){t) and xu(t), where yp = 2, g, = 0,
E{xi(t)} = 5 and E{z}(f)} = 2. Calculate the averages p,(t), o2(t), E{y*(#)} for
the random provess y(t) = 1y {t) + wo(t).

Exercise 17.5

Find the variance of ¢(t) = z(t) - y(¢}, where z(t) is & random signal with variance
a2 = 10 and y(t) is any deterministic signal.

Exercise 17.6

The ergodic random process a(t) has i, = 1 and o = 4. Caleulate u, (1), o2(t),
E{g?(t)} and y,(t) for
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a) y(t) = aft) + K

b y(i) = () + sint
¢} ¥(t) = x{t) +e(t)
4) w(t) = x(t) - 5e(t)

For cach part, say whether y{t) s crgodic. Assume in part d) that all sample
functions z;(t) are even,

Exercise 17.7

Give 2, (8), E{z2(t)}, 02(#) and a;(¢) for the deterministic signal z(t) = ¢~ "Me(t),
Exercise 17.8

Consider the discrete random process “throwing a die’, where a} x2fk] is the number
thrown and b} z[k] is the square of the number thrown. Find u,{k], o.[k] and
E{z%{k]}. Are the processes ergodic?

Exercise 17.9

Consider the discrete random process ‘throwing a losded die’ where six always
appears ai times & = 3N, N € Z, but the numbers thrown at other times are

distributed equally, and where ¢{k] is the number thrown. Find k] and 3:2[k],
and also py,lk], oy[kl and E{y?[k]}. ls the process stationary and/or ergodic?

Exercise 17.10
Calculate the ACF of deterministic signal «(#} = K, K ¢C with (17.36).
Exercise 17.11

What peculiarities does the ACF have for the random process from Exercise 17.37
Does it only depend on the difference of the averaging points? Give g, (f, fs +
10s).

Exercise 17.12
Let 2(t) and y(¢) be two real random signals.

&) Show that B{x(t)y(t)} = 0 entails from E{(z(t) + y(1))*} = E{2*({)} +
E{y*(®)}.

b} How can E{z{t)y(t)} be simplified if #(¢) and y{t) are uncorrelated?
¢} (Yive the conditions for uncorrelated #{t) and y{£) so that E{z(t)y(t)} = 0.
Exercise 17.13

What are the formulae for power, DC component, effective value and AC power
for a deterministic real signal d(i)?
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Exercise 17.14

The AC component power of a deterministic real signal d{f) with DC coniponent
i can be caleulated in two ways: P = (d(2) — )2 or P = d2(t) — p®. Show that
both formulac produce the same result,

Exercise 17.15

Derive the eqation ¢, {¢) = Puy(7) — pzjly, which holds for all real stationary
random processes. Starh with the definition (17.51).

Exercizse 17.16

The relationship between two stationary random processes z(t) and y(#) is ex-
47 + 10

pressed by ipg, () = i Find pty, @y (2), ¥ay(7) and . (2), if p, = 1.
Exercise 17.17
A stationary random process v{t) with ¢, {z) = ¢~/7 is used to create a further

random process u{t) by delaying o(f) by £y = 10. Determine

Zt) Houy Puy Wm.’(r)s (Pum.(r) and [Pwm(r)
b) Do (?f-"-—') Fo (JUJ,} and G, U‘-"-’)

¢} What symmetry properties do @), Pue{w) and &, (5e) have? Is the
random process complex?

Exercise 17.18

Determine the auto-correlation sequence @,.[x], the aula-covariance sequence
Urwln] and the power density spectrum ®,.(e/?) of the randem process from
Exercise 17.8a).

Exercise 17.19

Congider the ergodic discrete random process ‘throwing a tetrabedral die’, which
lias 0 marked on one side and | m'trked on the other three; xlk) is the mumber
lving underncath. Determine je., 0.2, @ur (5], Poes] and @, (7).

Exercise 17.20

The ensemble k] is produced as in Exercise 17.19, and a further ensembie is pro-
duced by throwing a second tetrahedron whose sides are marked with the numbers
1,2,3 and 4: ylk] is the number lying underneath. Determine iy, 04,2, wuylil, @y (4]
and @ye ).
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Exercise 17.21

The sketched power density spectruin of a random process z(t) is given. Determine
the power and auto-correlation function of z(¢).




18 Random Signals and
LTI-Systems

Now that we have deseribed random signals with correlation functions and power
density spectra, we can use these new tools to investigate the response of LTI-
systems to random signals. Rather than being interested in the precise behaviour
of the output signal when a particular sample function of a randoimn process appears
at the input, we want to describe the system output as a random process and aze
looking for the expected values of the output process dependent on the expected
values of the input process.

We will see that the relationships between the expected values at the inpul
and output of an LTT-system take a similar form to the relationships between
deterministic lnput and output signals.

To begin the chapter we will deal with random signals that are the result of
multiplying a random signal with a constant or by adding random signals together.
Then we will describe the response of LTT-svstems to random signals. Finally we
will consider applications of the theory.

18.1 Combining Random Signals

With expected values, correlation functions and power density spectra, we have
learnt the most gignificant forms for describing random signals in the time-domain
and frequency-domain. Now we are interested in the connectiona between random
signals and whatl influence they have on the description forms just mentioned. The
discussion will be restricted to multiplication of a random signal with a constant
and adding two random signals together, as shown in Figures 18,1 and 18.2. These
are two significant elements of block diagrams as we found in Chapter 2.2, In
Bection 18.2 we will consider genoral LT -systems,

18.1.1 Multiplication of a Random Signal with a Factor

Multiplying a random signal z(#) with a complex, constant factor K, in accordance
with Figure 18.1 creates the new random signal

ult) = Kz(t). (18.1)
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We now want to express the auto-correlation funection of the output signal ¢, {7}
and the cross-corrolation function . (z) of the vutput signal and input signal,
with the ante-correlation function of the input signal o, (7).

For the auto-correlation function of the output signal,

euple) = B{ylt + Oy (1)} = Bzt + )K" (1)} = [KPpea(c)  (182)

is immediately obtained. Likewise the cross-correlation function between x{1) and
y(t) is
purl®) = Blylt+ 007 (0} = B(Ka(t + 02" (9)) = Kena(z)  (183)
Caplz) = Ela{t+ )y (6)} = Fl{e(t + o) K 2™ (1)} = K (). (18.4)
For ihe (cross-)power density spectra, corresponding relationships are obtained,

becanse the Fourier transform is linear.
These results can be summarised in & clearer form.

PaalT) oo Doy(jw) i
LPy:r-(f} = I\‘Prr(f) o8 Fpp(fuwK = ‘I)yrs(jw)
Pyl ) = K'pplt) oo Qp(jw)K" = Py ()
Py () = [KBpan(7) o9 Sua(jullK P = Oy (juw)

ff% - Y1)

K

¥

x(H)

Figure 18.1: Multiplication of a random signal with a constant factor K

18.1.2 Addition of Random Signals

Figure 18.2 shows two random signals f(t) and g(t) being added to form a new
random signal y{t). The properties of both random process f(t) and g(t) are
known, but the properties of the summed process y(t) must be determined. From
the random processes f{{) and g(1) we only expect enough Information to form
auto- and ¢ross-correlation functions, in parlicular, that f{t} and g{t} are joint
weak stationary random processes. Complex sample functions are permified.
Fhe addition of random signals is the simplest and most frequently vsed maodel
for describing noise-like interference. We can, for exarnple, represent the output
signal of an amplifier y{t) as the sum of the ideal (noise-free) amplified signal f(t)
and the noise g(f). The ideal signal f(#) can be a speech or mwusic signal and
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A

¥@)

£()

Figure 18.2: Addition of two random signals f(2) and g{#)

is here described as a random process. Even when this model does not exactly
reproduce the interference in a multi-stage amplifier, in many cases it still delivers
a good approximation of the actual rclationships. Its greatest advantage is the
simple analysis that we are aboul to carry out for the auto-correlation function
and the power density spectrum, and then for the cross-correlavion function and
crogspower densily spectrim,

18.1.2.1 Auto-Correlation Function and Power Density Spectrum

The summed signal y{f) from Figure 18,2 is simply
y(t) = f(t) +9(t) . (18.9)

Tts auto-correlation function (17.56)

oy = E{ylt + ol (1)} (18.10)

can be used to work hack to the avto-correlation and cross-correlation functions of
F{£) and g{t}, with the calculation rules from Chapter 17.2.3. Substitnting {18.9)
into (18,10} yields

eylt) = E{{f{t+2) + gt = N7+ 9" ()} (18.11)
= prlr) +io5(2) + 0g (0) +ipge(7) (18.12)
The auto-correlation function ., () is therefore formed from the auto-correlation
functions of the signals f(¢) and g{!) and their crogs-correlation functions.
The power density spectziun at the output is found by Fourier transforming
(18.12):
Dy (dw) = Cp5(9w) + B py(fur) + By (Jw) + Byg{jw) (18.13)

Using (17.74) we can summarise both crosspower densities as a real variable

0y (jw) + Pgs(jw) = B 5o (Jw) + Pp(w) = 2Re{® 7o (Ju)} (18.14)
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and obtain for the power density spectrum Py, (jw}, the expression

@y (Jw) = pp(jw) + 2Re{® sy ()} + gy () (18.15)

which is obviously real.

In addition, the power density spectrum ®,,(ju) s made up of the spectra of
the signals f(t} and g(t) and of their mubual crosspower density spectrum.

The results so far hold for the addition of any two random processes f{1) and
g{t). Possible correlation between the random processes is taken into account by
the eross-correlation function ¢s4(7) and crosspower density spectrum g, (jw).

These relationships become much shnpler ¥ both random processes are uncor-
refated and at least one has & zero mean. Then, from (17.55) we obtain

Pre{r) =0 oe Pp(jw}=0 (18.16)

and the relations {18.12) and (18.15) simplify to

Wri{T) + pge{7) (18.17)
Berljw) + (:I)yg(jw) - {18.18)

Oyy{T)
q’w(ﬁ*—‘)

Asswiming that the processes are uncorrelated holds in many cases where g{{)
represents a signal interfering with the useful signal f{t}. Examples are amplifier
noise independent of the input signal or atmospheric effects on radio transmission
that is likewise independent of the transmitted signal. As this kind of interference
also usually has a zero mean, the simple relationships (18.17) and (18.18) also
hold. They say that when two uncorrelated random processes are added, and as
long as at least one has a zero mean, the auto-correlation functions and power
density spectra are also added together to form the respective functions for the
complete signal model.

18.1.2.2 Cross-Correlation Function and CrossPower Density Spec-
trum

We next consider the cross-correlation function hetween f(t) and the sum ylt) =
F{) + g(t) as well as the corresponding crosspower density spectrum. Correla-
tion between f(1) and git) is now pennitted. From (17.53) and (18.9) the cross-
correlation function gy, (7} is obtained:

91y() = B{f (¢ + (O + 57 ({0} = @rs(e) +954(7) . (18.19)

The cross-correlation function belween a sum torm and the summed signal is the
sum of the anto-correlation function of the corresponding suin term and the eross-
correlation function between both sum terms.
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For the cross spectrum the same rule applies using the respoctive power spoctra
of f(&) and g{t)

| 2, iw) = By (i0) + By, (5 - | (18.20)

These results also becoine particularty simple if both random processes are un-
corrclated and at least one has a zero mean. The cross-correlation function ¢, (7)
and the crosspower density spectium $ 7, (jw) then disappear and we are left with:

erolt) = @up(7) (18.21)
By (uw) Dsrliw) . (18.22)

i1

All results in this scction hold correspondingly far the cross-correlation function
and the crosspower density spectrum between g(f) and y{f).

18.2 Response of LTI-Systems to Random Signals

Now that we bave defined the statistical description of input and output processes
that arise by addivion or multiplication of each other, we can consider the corre-
sponding relationships tor mput and output signals of LTEsystems. As deseription
forms for LTT-systems, we will choose the impulse response and frequency response.
No assumptions are made about the inner structure of the system. Next it mmust
be clarified whether the a stationary or ergodic input signal brings about the same
properties in the output signal. To do this we first derive the connections between
the dilferent averages at the inpul and output of LTI-systems in detail.

18.2.1 Stationarity and Ergodicity

We start with an LTE-system as in Figure 18.3 and consider, if the input process
is siationary or an ergodiec random process, then does the output process also
have these properties? If that is the case, we can also use the correlation function
and power density description that wasg introduced in Chapter 17 on the output
process, under the condition of weak stationarity.

H the inpnt process is stationary theu the sccond-order expected values do not.
change when the input signal is shifted by time At (compare (17.12)):

B{f(a(t1), 2(t2))} = BUf (2(ts + A}, x(ty + A1)} (18.23)
Becanse the system time-invariant, for the outpus signal y{t) = S{x(#)},
y(t, + At) = S {z(t, + At)} . (18.24)
Lolds and from (18.23} we abtain
Elgly(t). (821} = Eigly(ts + Athylts + At} } (18.25)
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as g(5{z (1)}, S{x(t2)}) also represents 4 time-invariant system. The output pro-
cess is therefore likewise stationary. Corresponding statements about weak sta-
tionary and ergodic processes can be obtained in the same way.

Now we know that for an input signal which is

a) weak stationary or stationary,
b) weak ergodic or ergodic,

the output signal also has the same properties. Likewise, input and output pro-
cesses show the sarme joint properties. The different relationships are illustrated
in Figure 18.3.

——»] L Tl-system [~

(1) ¥
a} (weak} stationary a) {(weslk) stationary
b} {weak) ergndic b) {weak) ergodic

a) joint (weak) stationary
b) joint {weak) crgodic

Figure 18.3: LTT-system with input gignal z(t) and output signal ()

18.2.2 Linear Mean at the Output of an LTI-System

To determine the inear mean at the output of an LT-system with impulse response
R(t) as in Figure 18.4, we start with the eonvolution (8.39)

y(t) = x(t) = h{t) (18.26)
and form the linear mean E{y(f)} = p, (¢} of the cuiput signal:
iy () = E{y(®)} = E{w(t) » h{)} = B{a(t)} « hlt) = pa() ¥ h(H).  (18.20)

The input signal z(¢} is a random variable, but the impulse response A(¢) is not,
s0 the expected value formed with =(#) and g, () can be expressed by u,(t) and
h{t). Here, z(t} does not have to be a stationary process and this means u.. (¢}
and i, {t) are therefore dependent on time. Comparing (18.267 and (18.27), we
sea that the relationship between the determined linear expected values p.(¢) and
(1) has the same formn as the convolution between the input signal z{t) and the
output signal y(t).
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b h T
® O

x(£)

Figure 18.4: LTT-system with impulse response h(t)

If the input signal x{t) is stationary, then the linear mean E{x(t)} = pz s
constant in time and the convolution relationship simplifies to

e _u)

by = B} = [ peh(e)de = o H(O). (18.28)

The congtant. linear average g, can be brought cutside of the integral, and the
remaicing integral over h{r) can be written as the value H(0) of the Fourier
integral (9.1) at w = 0. The mean of a stationary random signal is therefore
transferred like the DC component of a deterministic signal. Thus we obtain the
sirnple formaia

fy = s H{DY (18.29)

18.2.3 Auto-Correlation Function at the Output of an LTI
System

We will caleulate the anto-correlation function ab the system output for a station-
ary input signal. The auto-correlation lunction

Py (0) = Efy(t + )y (O} (18.30)

is obtained from the auto-correlation fnnction @, (7} of the put signal and the
impulse response i(t), by using convolution (18.26) and some rearrangements. The
alm of the rearrangements is to move the expectation vperator luto the resulting
integrals and apply it to the input signal.

In the first step we express the output signal y(t) in {18.30) with the convolution
integral:

Pyl T) = E{ .?.i,(p):;:(t + =) d,ufh*(y)x*(t - v} du} . (18.31)
i L

Bringing both convolutions together to formm a double integral, sorting the terms
within the integral and using the expected valucs on the resulting product of the
inpul signals yields

Pyl o) = [ /Fz.(,a) A E{m(é +r—prat(t— }/]} dpede {18.32}
LR S
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The expected value is now formed from the product of the vahies of the nput signal
at different time points and iherefore represents the anto-correlation fanction of the
inpul signal. Because the input signal is stationary, the suto-correlation funclion
depends on the difference hetween the time points t + ¢ — g and £ — 2

W) = [ [h{,u,) W () gt~ o+ v)dpde, (18.33)
2 IH.

We have now found the first connection between the auto-correlation functions at
the input @..{z) and at the output v,,{z).

We can Iurther simplify the rather involved expression (18.33), by recalling the
correlation of deterministic signals introduced in Chapter 9.9. To use the definition
of the auto-correlation fimnction for deterministic signals, given in (9.103), we fixst
substitute 8 = p — v into (18.33) and ebtain

() = /e f R{p) (1~ 8) Ayt (7 — 8) 6. (18.34)
It 73

After another substitution A = u — §, we recoganise in the inner integral the anto-
correlation function ¢p,{0) as in (9.103):

enn(8) = /

R h* (i — 6) dps = / ROV ) hY(X) dA = h(6) « k' (—0) . (18.35)
T A

Despite having the same notation, the anto-correlation function wpn(#) does not
represent an expected value of a random process, as the the impulse response A{t)
is a deterministic function. We can, however, interpret ¢ (8) 85 an expected
value of A{A + 8) A*{A), like we did with the random processes, if we define the
oxpected value for deterministic functions with the ntegration in {18.35). As the
anto-correlation function @pa (@) describes the LTT-system, it is also called o filler
auto-correlation function (filter ACE). Describing deterministic ETI-systems using
characteristics which are similar to those for random signals has the advantage that
it ajlows the initially cumbersome expression (18.33) to be represented in a simpler
and morc easily remembered form. To derive such an expression we put (18.35)
into {18.34] and obtain

‘Pyy(f) = A@!¢}¢(6) (Jo,rzr(f - 9) df = [Phh(r) * {P:r:r(r) . {1836)

The anto-correlation function at the ontput v, () is now obtained as convolution
of the auto-correlation function at. the inpul p,.{z} with the filfer auto-correlation
function @pp(z). The filter auto-correlation function is itself the convolution of the
tmpulse vesponse Aft) with A*{—t). In this way the relationship belween the auto-
correlation functions at the input and ontput of an LTEsystem and its hnpulse
response can be suminarised with two simple equations:
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{;‘w.‘.f ) = f.”h,';(r} % i r} (18_37}
omle) = h(2)ah*(~7). (13.38)
(18.39)

The mean square as a measure for the power of the output signal is obtained by
cvaluating the convolution integral at ¢ = O

E{ly(t)[*} = @y (0) = /r o 7) a0 dt. (18.40)

Example 18.1

We will consider an ideal delay eircuit with the impulse response
hit) = d(t ~ tg).
With (18.38) and (18.39) we obtain
el =8z —to) #8{—7 — ty) = 3{T)

Pyylt) = 8{7) * o (T) = Yra(T).

The ACT is not changed by the delay circait.
[ ]

For discrete systems with impulse response hik] there are similar relation-
ships for the amto-correlation sequences of the output signal. With the defi-
nition of discrete convolution {12.48) as a sum, the formulae for discrete sys-
tems look exactly like the expressions {18.38), (18.39) for comtinuous systems:

(py?‘f[‘r“’] - ‘Phh[m]*’foa:m[m] (1841]
wnale] = sl *h*{-x . (18.42)

18.2.4 Cross-Correlation Function Between the Input and
Output of an LTI-System

‘Fhe cross-correlation function between the input and the output of an LTT-system
can be obtained with a similar procedure to that for the anto-correlation function.
For a stationary input signal, starting with

Pey(2) = E{{t + ) 4" (1} (18.43)
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the convolution integral ie inserted

Pay(r} =Eqz(t + ) / R (uyz*(t — p) dﬁ} | (18.44)
I
then interchanging the sequence of integration and expected values yields
orl0) = [ B WBLal+ D)2~ ) dis (18.45)
In

In the expected value we again recognise the auto-correlation function of the input
signal 2{t):

Peu(®) = [ (W) s ). (18.46)
I
By substituting v = -y we finally reach the desired expression for the cross-

correlation Function of the input and output of an LTI-system and its impulse
TeSpOnse:

Pry(T) = / R (=) 9 — v v = R (= 1)+ (). (18.47)

The formula obtained for the cross-correlation function @, (z) hetween the in-
put and output is easier to remember. To derive it from (18.47) we first make
use of the symmetry relationships for correlation functions from Chapter 17.4.2,
From (17.54) in combination with (18.16) we obtain

Pun(D) = 9, (=0) = [ Wy otol-r+ ubd, (18.48)
i
The conjugate symmetry of the anto-correlation function {17.58) vields
Pun(?) = [ () prale = )y = B e 2)- (18.49)
e

Both possible cross-correlation functions between the input and output of an
LTI-system are easily obtained by convolufion of the auto-correlation function at
the input with the impulse response h({z) and h*{—z):

s fry — K> (ﬂ SR (18.
ue(T) = R(2) % (7). (18.5
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Example 18.2

We again consider the ideal delay circuit from Example 18.1, and with {18.52)
find
(wa(f) = 8z — tg) * @:r:m(f) = 50:“:(5*" ta).
The eross-correlation function between the input and output of a delay circuit is
simply a shifted version of the auto-eorrelation function. This simple insight is
used in many engineering systems to measure signal delay, for example, radar or
sOnAar,
m

According to the continuous case, for a discrete LTH-gystern with impulse re-

sponse h[k] holds Cayl] = B[] % g [Kl (18.53)
(18.54)

eyelb] = B[R] * @oe[r]. (18.55)

(18.56)

18.2.5 Power Density Spectrum and LTI-Systems

We have now derived the relationships between the correlation functions at the
input and output of LT |-systems and the impulse response. They turned out to be
very similar to convolution of & deferministic input signal and impulse respouse.
An even simpler description can be obtained in the frequency-domain by multi-
plying the inpub spectrum with the frequency response of the LTT-system. As we
have already met the power density spectrum as a frequency-domain deseription
of random signals, it is reasonable to assume that there are some similar relation-
ships between (cross-)power density spoectra at the input and output of a system
and its frequency response.

We will start with the cross-correlation function @y,{7) as in {18.52). Fourier
transformation @,..(ju) = F{w..{z)} of the ACF {17.69) and the CCF (17.70),
&, (jw} = Flye{7)}, and the convolution theorem (9.70} yields

Byelie) = Dpp (Gw)H {jw) . (18.57)

The cross-power density spectrum &, (jw} is obtained from the power density
spectrum P, (jw) of the input signal by multiplying it with the frequency response
H{4w) of the TTT-system.

The cross-power density spectrum €, (jw) conld also be derived in the same
way from (18.51), wsing Fourier transformation. We can obiain it more guickly
from (18.57), however, with (17.74) as

@xy(jw) = (bxr(Jw)H*(.}w) . (18.58)
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itere we have used the fact that the power density spechrum ®,.,.(juw) is read (17.73).
For the power density spectrum of the output signal ®,,,(jw) a simple relation-
ship can be found by Fourier transforming (18.38). The Fourier transform of the
ACE ppa{r) can, after the results of Chapter 9.9.2.4 {Correlation of Deterministic
Signals}, be expressed by the magnitude squared frequency response H (juw):

Dl Tjo—e By (juw) = H{jw)H* (ju) = [H (jw}? (18.59)

vielding
Py (Gw) = Co (e H (G2 . {18.60}

The sigrificant relationships for correlation functions and power density can
now be summarised in a clearer form:

Pru(t) o—e Bu.(jw) {18.61)

o
!
L

@ya () = h(2) * o (2)

Oop(ju) H{jo) = Bge(pw) | {18.62)

Pay(T) = A=) % ppa(T) 0o B JWIH (Jw) = Buy{juw) [ (18.63)

E

Py (2} = PralT) * ©pe{T)

Equations (18.61) to (18.64) have the same form as the corresponding
equations {18.5) to (18.8} for multipheation with a complex constant
K. The expressions obtained are a special case of (18.61) to (18.64) for
H{ju)= K oo h(t)=K(z).

The results obtained in the preceding sections can be made even clearer
and more general. Instead of the anio-correlasion function ¢,,(7) or the cross-
correlation function ¢,.(7), we could have used the cross-correlation fumction
wye( 7} with any other vandom signal r(¢), as shown in Figure 18.5. The same

xty —= Bty — ¥
knowe I I unknown

Pur(T) Py {7)

r(t) > r(7)
Figure 18.5: CCF of a signal with the input and output of an LTl-system

steps as in the derivation of @, {7) in Section 18.2.4 would then have lead to

Pye{T) = i (1) x B{7) (18.65)

B, G| HGw)E = @, (jw). | (18.64)
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aud the corresponding representation in the frequency-domain, in accordance
with {18.57) and {18.58)

Dy (Jw) = Bplw) H{jw) (18.66)
By (Jier) By (Jor) H (jio) . {18.67)

Using a suitable substitution for », equations (18.62) to (18.64) can be found
from the last two expressions. From (18.66) we let r = 2 and » = g, and obtain

Pype(iw) = Ppljw) H(jw) {18.68)

() = Ppyliw) 7 (jw) (18.69)
and from (18.67) for r = &

@y {jw) = O (fu) H* () (18.70)

Fipally, (18.69) and {18.70) yield

(I’:t,r:hf (.?w) = (]—-}w-y(.'}w) ﬂr(?w} =, (]W) H* (JW)H{‘?“’} = d)—ﬂ(.}w)”{(ﬁ‘-")lg .
(18.71)
T4, is therefore sufficient to remember formulae (18.66) and (18.67}; all of the impor-
tant relations between the (cross-)power density spectya at the input and output
of T.TT-systems can be derived from them.

Exampie 18.3

A typical stock exchange index x{#) has a power density spectrum. ol the form
2a

'i);a.‘:r(jw) = m 1

where a g very small. The change of the udex with time coaveniently prodnces a
differentiator with the transfer function

HigwY = jw.
The resulting derivative y{¢) = #(t} has the power density spectrum

2 Qaw?
i g ) == @, jw) = —t e .
yulrw) rakjw) o al

For w? » a2,

P, (dew) = 20,
The corresponding ACF is

oy (7) 22 2ad8(7) .
Sequential changes of the stock exchange index are therefore completely uncorre-
lated.
[ |
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18.2.6 Interpretation of the Power Density Spectrum

We can explain the interpretation of the power density spectrum (which should
actually be called the autopower density spectrum} with a thought experiment.
We start with a rvandom signal z(#) which has power density spectrom @, {jw).
It will be filtered through an ideal band-pass filter with frequency response

. 1 for wy<w<wy+ Aw
H{jw) = { 0 otherwise (18.72)
We have already enconntered band-pass filters of this kind when we looked at sam-
pling complex band-pass signals in Chapter 11.3.3. Becanse they do not have con-
jugate symmotry they have complex impulse responses, and they produce complex
output signals from real input signals. However, this is not necessarily a problem;
we will imagine that Aw is very small, and the band-pass therefore lets through
only a very narrow frequency baud.

H(ja)

1

Wy " wptdw w

Figure 18.6: Band-pass which bas been shifted to the right, and is therefore complex

To determine the power of the output signal, we calenlate the quadratic mean
of the output signal y{t) = h{2) * z(t). We use the inverse Fourier translorm of
®,,(jw) from (18.64), instead of the convolution iutegral as in (18.40):

B} = 5 [ @erlion) () o (18.73)

2% J_.,

As H{jw) hag a narrow band character, the integral with respect. to w only covers
a narrow baud of the power density spectrum $.,(jw), of width Acw:

, 1 sy b S i i
E{W(f)lz} = ':'E;T“ / (D:::u:(_jw}(bﬂ o] E‘I’:m:(jwﬂ)f&w . {1874)

Leiy
The power density spectrum represents the distribution of & random signal’s power
onte an infinite number of infinitesimal frequeney bands of width Aw. This justifies
the name power density and confirms the interpretation from Chapier 17.5.2 (see
Figure 17.9). At the same time we can obtaln

Bpaw) 20 Y, (18.75)
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which we gave in Chapter 17.5.2 without proof.

The interpretation of the cross-power density spectrum @,.,.(jw) between a
signal 2(t) and a reference signal »{#) can be carried eut simitarly, in principle, even
though the result is not quite so descriptive. Again having in mind the analysis of
z(t) inte many narrow band pass signals according to (18.66), ®,..{jws) turns out
to be the cross spectrum @,,.(jwn) of the frequency component y{t) = =(t) * h{t)
with frequency wy.

I the reference signal r(£) is also filtered wich a corresponding band-pass filter,
the cross-power spectrum does pot change. Clearly only components of the same
frequency contribuie to the cross-correlation hetween two stationary signals. The
correlation between these band-pass companents is recorded in the eross-power
density spectrurn. I there is a fixed amplitude and phase relationship between
x(¢) and »(2), it will appear in the cross spectrum. If the frequeney components
do not correlate, $..(juw) = 0.

18.2.7 Measuring the Transfer Behaviour of an LTI-System

The transfer behaviour of an LTl-system is completely described by its impulse
regponse or transfer function, There are various ways of measuring them. Theo-
relically it iz possible to excite the system with a delta impulse awd measure the
cutput response but, in practice, the high amplitudes required for an approxima-
tion of the delta impulse cause many problems. Another way is Lo excite the system
with a sine wave with varying frequency and measure the frequency response, with
the amplitnde and phase of the output signal. A prerequisiie is that apart from
its response to the sinusoidal input signal, the ontput signal may not contain any
interference, because otherwise it would falsify the measurement. Beyond that,
the frequency of the sinmgoidal signal ¢an anly be changed slowly enough that no
undesired transients appear.

A Detter, more modern method uses a wideband noise signal and statistical
analysis of the output signal. Qne corresponding measurement setup is shown
in Figure 18.7. The wideband measurement signal at the inpus is described as
white noise. This approximation s always justified if the bandwidth of the noise
sonrce is much greater than the bandwidth of the system under investigation., The
unkuown transfer behaviour is obtained from the cross-correlation between the
input and output signals.

For white noise with noise power Ny = 1 (see Chapter 17.5.4):

"?g:z;n(r) = 6( z) Qe Pprlgw) =1 . {18.76)
For the cross-corrclation function . (7} between the output and input, and for

the cross-power density spectrum. .. (fw) follows from (18.62):

Wor(t) = @elt)xh{2) = 6{e) + h(2) = Az} {(18.77)
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noise .
soulrce x(r} | H{jon=" NG i
Pl D=KT) h(f)y="

cct
measurement

:

Figure 18.7: Apalysing an LTl-systein with white noise

f )

Pye(j) = H{jw). (18.78)

The cross-correlation funclion gaym(t) and cross-power density spectrum
. (jw) immediately give the impulse response and transfer function of an un-
known LTEsystem. If the signal (1) is overlapped by a noise signal n{t}, the result
remaaing unchanged, as long as x(i) and n{t) do not correlale (Exercise 18.17).

18.3 Signal Estimation Using the Wiener Filter

The ficld of sipnal estimalion concerns reconstruction of a stgnal that has beon
corrupted by various influences, The original signal is corrected as much as possible
using knowledge of the statistical properties of the corrupting influence. 1f we are
dealing with weak stationary random processes and LTT-systems, then we will be
able t¢ put the theory we developed in Section 18.2 to good use.

The problewn is depicted in Figure 18.8. The original signal s({) is not directly
accessible; only the signal 1) can be observed. The influence which corrupts the
original signal before it is nbserved will be described with the propoerties of an LTT-
gystemn and additionally, an interference signal (noise) with a random character.
No details about the structure of the LT T-systern and the noise signal are known.
We will agsume that we only know the cross-power densily spectrum ®,.(jw)
between the original signal s(¢) and the observed signal z(t), for example, from
measurement with a known original signal. FThe cross-power density spectrum is
a mathematical formulation of the influence lor the corrupting influence on the
original signal. The power density spectrum ®,,{jw) of the observed signal can
be determined by wmeasurement at any tlme, and s thus also known.

The filter H{jw} will be developed so that its output signal y(f} comes as close
to the original signal az possible. The task of the filter i3 therefore to eliminate
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. | sbservation
o_rsgm"a! ll x(t)
sigha LTlsystem |}/ reconstruction
+ ] - " . -
(1) nOISE E filter H(jo) Wt
}

Figure 18.8: Estimation of the original signal s(t)

the influence on the original signal. In the following sections we will develop a
method that provides a suitable transfer function f{jw) from the known guantities
& (fw) and P, (jw) in a systemnatic way. The filter is called an optunal or Wiener
filter.

Estimation of this kind is necessary in many different applications as these
examples show.

Measurement In this case s(t) is a physical quantity whose time-behaviour is
measuredd.  As each measurement affects the process being measured, the mea-
snring device gives an inaccurate observed version x(t) of the original signal s{t).
Additionally, errors in measurement can be modelled using noise signals.

Signal transmnission If a signal 3(f) is to be transmitted to another location,
it will be affectad by the non-ideal properties of the transmission chain and may
also be subject to interference, 8o the received signal z(f) no longer correspouds
to the transmitted signal s(t).

Recording In order to store a signal s{£), it must be changed so that it complics
with the requirements of the target medinm. The signal x{t} read at a later time
contains influences from the recording and reading equipment, and the interference
Iiere can also be modelled as noise.

18.3.1 Deriving the Transfer Function of the Wiener Filter

To derive the vptimal tramsfer function H(pw) we first of all need fo find a mathe-
matical approach which should precigely formulate the requirement that the output
signal y{f) is ‘as similar as possible’ to the original signal s{#). To achieve this, we
will introduce a measure for the difference between s(t) and (1), called the ervor
power or the estimation error

e(l) = yl{t) — s(1}. (18.79)
We represent the error power using the expected value

E{le(t)} = B{lu(t) ~ s} (18.80)
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Although we do not know the original signal s{{) or the reconstruction error e(t),
we cail express its power with known statistical quantities.

We know from Chapter 17.5.2 that the mean square £{je(#)[?} can also be cal-
culated by integrating the power density spectrum .. (jw) (compare Figure 17.9).
We will therefore consider the power density spectromn @,.{jw) of the reconstruc-
tion evror e(t), and try to make it as small as possible. @..(jw) is expressad by
the power density spectra ®,,,(jw) of the output signal and ®,,(jw} of the original
signal, From {18.79}, with expression {18.13), we obtain

for the addition of random variables. Here the argument {0} is left out to stmplify
the rotation.

To determine the transfer function H of the estimation filler. we need an
expression for the power density speciruin @, dependent on H. Using (18.64)
and the general relationships (15.66) and (18.67} with = = &, the correlation with
y can be expressed by the correlation with 2

B = Dy HH = By H — By H" + D (18.82)

The estimation filter H that leads to the smsHest error power is obtained
frenn (18.82) by differentiating P, with respect 0 H. It should be noted here
that the variables in {18.82) and H are both complex. Therefore we write {18.82)
dependent on the magnitude |H! and phase ¢ of the frequency response

H=[Hle™ (18.83}

and obtain
q)(i(.‘ = q)x.z, |H!2 - q-):n.\s ]}Hejq} e (I),-m: !Hfﬂ_ﬂs + (I)ss - (1884)

We can now differentiate with respect to the real variable [H|

zﬁ% = 2 H] By — By 7P — B2 ™77 = 2| H| Byy — 2Re]De™ )} =0 (18.85)
The optimal magnitude respouse [H] is determined from the requirement that the
derivative of ®,, with respect Lo |H| is zero:

Re{®., %)

=3

(18.86)

The phase ¢ is determined in the same way hy differentiating ®.. with respect to

&

URee 1| ! By + §|H| B, 2 0. (18.87)

e
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The optimal phase ¢ can be derived from
Im{®ze 7%} = In{|Dys] o7t ¥B{Frd 401} = (18.88)
where the imaginary part becomes zero when the phase is
§ = —arg{®,.}. (18.89)

The phase response of the estimation filter is therefore chosen to be equal to the
negative phase response of the cross-correlation function @,,. The magnifude [I7}
is now also completely defined, because from {18.86), and (18.89), we find

H| = Re{®,., *} _ Re“(pmie.-j{arg{fb,-.-s}w)} _ 1D, ]
‘I".LIL (I).I‘J (i):l!:i: ‘

(18.90)

With (18.83), the complex frequency response of the estimation filter can be ob-
tained from (18.89) and (18.90).

Pralw)  Bsoliw)

b
H {Jw) = @ﬂ_”:(jw} - ‘i’xl(?w)

(18.91)

This estitnation filter corrects the chserved signal @(f) such that the deviation
of the result y(t) from the original signal &{{) exhibits the smallest error power
possible. We derived this result without knowing the original signal s{¢). Anyway,
ihe description of random processes by mean values and power spectra cnables the
construction of an optimal estiimation filter. The estimation filter given by {18.91)
is called a Wiener fiter, according to Norbert Wiener {1894-1964), a pioncer of
estimation theory.

18.3.1.1 Linear Distortion and Additive Noise

The derivation of the Wiener filter as in {18.91) is general because we required no
knowledge of the kind of signal interference. The result can be illustrated by using
a common mode] for signal interference from deterministic and random sounrces,

Figure 18.9 shows the same get-up ag in Figure 18.8, The interference source is
in this case more accuralely modelled by an LTI-system with frequency response
G{jw) and an additive noise source n(t). The frequency response G{jw} can, for
example, stand for the frequency response of an arnplifier, a transmission cable, or
a radio chanuel. All external interference sources are smnmarized by the additive
noise signal n(?). The noise signal may not correlate with the original signal s(f).

We derive the frequency response for this set-up of the Wiener filter from the
general case in (18,91}, using {18.64) and (18.66). First, we obtain

By = e (18.92)
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from (18.66). For the cross-speciram $,,,, we use (18.22) and (18.64) to obtain

P = Py = O GG (18.93)
From (18.92) and (18.93}, we finally find
S = (-i‘.ssG(st . (1894)

The power density spectrum is obtained from (18.18) and (18.64)
Bz = Py + By = O [ + Bpy, . (18.95)

If we now put equations {18.94) and (18.95) into (18.91), we obtain the Wiener
filter for the set-up in Figure 18.9

o B, () O™ (Fw)
FI(M T 2 (W)IG W) + Banljw)

(18.96)

Knowing the [requency response G{jw) makes it possible in this case to find from
the cross-power density spectrum &, (jw), the power density spectrum @, (jw)
of the original signal and ®,,,{jw) of the noise signal.

original noise | observation
signat () I x(n)
i
E j V\}'?ener
el Gl0) - i iter | ..
eI I e i Hjw) | ¥
i

Figure 18.9: Reconstruction of a signal with linear distortion from additive noise

18.3.1.2 Ideal Transmission and Additive Noise

From the form of the Wiener filter in {18.96), we can derive two hmportant, special
cases, whose mode of operation we can easily see. First we assume an ideal transfer,
with G(jw) = 1, so shat the criginal signa! is only distosted by the additive noise
{see Figure 18.10). The task of the Wiener filter is then reduced to fnding the
best possible suppression of the noise signal n({¢). The corresponding frequency
regpoinse is

B, (juw)

H(;‘u}) = @, Uw) + Pun (jt.v‘)

(18.97)

The made of operation of the filter ean be derived directly from the frequency
response (18.97):



18.3. Signal Lstimation Using the Wiener Tilter 457

original noise |‘ observation
signal alt) | x()
|
: J de-noising
- - fitter .
s(t) | H(jw) M)
|

Figure 18,10; Filter for removing additive noise from a signal

s For &,.(ju) > O,,(jw) the signal power dominates, and the llter allows
the signal and the low-power noise to pass through unthindered: H{jw) = 1.

s Tor & {(5w) < $,.,(7w) the noise deminatles, and the [ifter hars both the
naise and the smaller signal component: H{jw) =0 .

Figure 18.11 shows an example of an original signal with a strongly fregqnency-
dependent power density spectrnun and & noise source that produces white noise.
The filter lets the frequency components pass where the original signal outweighs
the noise, and stops the frequencies where the original signal makes no contri-
bution. If both power density spectra are of the same order of magnitude, the
frequency response of the filter takes a value between 0 and 1.

1001~ g
101
] N Do . ~
0.11 T
@
: b >>P
H(;m)1 [~ E:H » ns Dy =P,
~, H=1
\ Y 5
0 A .
/ w
(p‘a's <‘{(D.m‘l
H =0

Iigure 18.01: Power denstty spectrum $,,(3w) of 1he original signal, Drn(p0) of the
noise, and frequency response f1(pw) of the Wiener filter.



458 18. Random Signals and LT1-Systems

18.3.1.3 Linear Distortion Withont Noise

The other special case that we can derive frony the frequency response {18.96)
of the Wiener filter is identified by removing the noise source: ®.,(jw) = 0.
The original signal 5(¢} is then only corrupted by the T/ TT-system with frequency
response C(jw). The frequency response of the Wiener filter then takes the form

v Bul)G ) 1
[H(J e G(JW)J 039

which means that it is teying to remove the effects of the distorting systemn G(jw).
Aslong as {G(jw)| # 0, this will be successful, and is even independent of the power
density spectrum ®,,(jw) of the original signal s(t). We have aiready discussed
this case in Chapter 8.5.2 *de-couvolution’, but because the noise was disregarded,
it was not guite compiete. In addition, we have to bear in mind the stability of
H{jw) (Chapter 17.3.1).

18.4 Exercises

Exercise 18.1

A complex constant ¢ will he added to a slationary random signal x({Z) with
average fe, and ACF o, (7).
C

x(t) ¥(1)

Find ., (7) and @y, (1)

a) using the definitions of the CCF and ACF, (17.53) and (17.56)
b} with Sections 18.1.2.1 and 18.1.2.2.

Exercise 18.2

The following systern has complex constants 4 and B and a stationary complex
input signal #(8) with ACF ¢,.(r) and average fi.,.

| |
| 1) ‘

x(2)
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With Section 18.1, find
a) pw(T)
b) py,(T)
¢) @ae(T)
Note: use the answer from Fxercise 17.10.
Exercise 18.3
For the system from Exeveise 18.2, find ¢, (7).
a) Use the definition of the CCF (17.53).
13} Can the problem also be solved with (18.61)-(18.64)7 Justify your answer.

Exercise 18.4

Consider the folowing svstem wilh 2 inputs and 2 outpuls and complex constants
A and B. The random processes u(t) and ¢(#) are stationary, have zero mean and
are complex.

wf)

From the given correlation properties ., (7}, @u.{(7) and . {2), find
a) the ACF of w(?)
b} the CCF hetween » and w
¢) the CCF belween w and v
dy the CCF between « and w
e} the CCF between w and u

Use only the definition of the CCF for complex signals (17.53) and the ekpression
(17.54). Finally, verily results a), d) and e} with Section 18.1.

Exercise 18.5

The linear combination z(t) = A=z(t) + By(t) is formed from two independent
randem processes x(t) and y(t). A, B € R, and x{t) has a zero mean and y(¢) has
mean fiy. Find (1), 0y () and ., (2}
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Exercise 18.6
A linear, time-invariant system is described by its cransfer function

2 —25+2
H(s) = g
S S I )
1ts impulse response is ().
a) Calculate the filker ACF g, (7} and sketeh its response,

b} White noise with power deusity Ny = 1 is applied to the system input, Give
the auto-correlation function ., () and the power P, of the output signal

y(t).
Exercise 18.7

A systermn has the impulse response h(#}, nn input signal z(t) and sutput signal
y{l).

2(#) is stationary and has a zero-mean, @, (¢) = §( ) and h(t) = «i{t).

Find

a) the power density spectrum of x(#)

b} p, and g,

) panlr)

d) pyylr)

e) Payl7)

f} Power and variance of x{f) and y(t).
Exercise 18.8

A system has the trausfer lunction

H(ju) = cos(é—z—w)rect( 2:
] Y

)

a) Determine the impulse response h{?).
b) Find the filier ACI @pn(z)

¢) At the system input a signal is applied with power density @, (jw) = No +
md{w). Find the ACF of the input signal w7} and the mean p,.

d) For the output signat y(t), find the mean gy, the auto-correlation fi_mct'ioxz
Wyp{ T), the output signal power £, and the power density spectrumn Dy (Jr).
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Exercise 18.9

A system with the transfer function

s—1

Hls) = 52+ 35 +2

is excited by white noise with power density Ng. Determine the anto-correlation
funclion, the mean and the variance of the output variable y(t).

Exercise 18.10

A systern with transfer function H{s) is driven by a white noise signal z(t) with
power density N, The auto-correlation of the output signal is measured ¢, (7} =
Ny %e“‘] . where v > 0.

a} Determine a possible transfer function H{s} for the system.
b} Can the iransfer fimction be unambiguously determined?

Exercise 18.11

Twa causal LTT-systems are described with their impulse responses hy(f) and
ha(t). They both have a stochastic input signal z(#) with aute-correlation function
e (). Two stochastic output signals 41 (£) and yo(#) are produced.

a) Express the auto-correlation functions ¢, ,, (7} and @, (7) of the output
signals with the given signal and system descriptions.

b} Determine the cross-correlation funclions @, .(7) and oy, (7).
¢) Give the corresponding cross-correlation function @y, 4, ().
Exercise 18.12
Derive (18.54) from the CCF of complex random series @, [s] = E{xfk + sjz*[k}}.
Exercise 18.13
Derive (18.41) from the ACF of complex random series .. |s] = E{a[k + |z [x]}.

FExercise 18.14

The following set-up is often used o generate a signal with the spectral properties
of a discrete speech signal, where @y, k] = df&).

nfk] z s[k}

0.9 71

&
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a) Calculate the frequency response H (/%) of the system with outpnt nfk] and
output s[k].

b) Calculate ®,4(e7?) and sketch it (e.g., with MATLAB).

Exercise 18.15

A transmission channel is characterised by the following system with real constants
o and b

— o —— e — e

(1) (F)-(3) ¥6)

The nterference n(t) does not correlate with @(¢). Both signals are white noise
witl power densitics @, (jw) = Ny and &, (jw) = 1.

Determine the trausfer funetion H{jw} ol a system that reconstruets a signal «(t)
from {t) with minimal mean square error. The reconstructed signal at the output
of H{jw) shouid be denoted by F(#).

a) Which statistical signal properties must be known to solve the problem? Give
H{jw) dependent on these variables. Is the solution optimal with respect to
the task set?

b} Find H{jw) as well as ®z3(jw) for the transmission channel shown above
for @ = 1 and b = 100. Set Ny = 0. Sketch ®,,{jw)}, ¥,,(jw), |H{jw}| and
Pzz{iw) in logarithmic form for 10 2 < w < 10,

¢) Solve b) for Np = 9999, Instead of ¢, {jw), sketch the behaviour of © (e
G (jw)i? and for comparison, also plot @, (jw) in the sazne diagram.

Note: treat the sketches in the same way as Bode diagrams, or plot the curves
using o computer.
Exercise 18.16

The transmission of a signal s(t) is subject to interference from noise n(t) and
distortion from G(s), as shown in the jllustration.

riE)

A:)—»él(l)«- G(s) |—wx(1) ~—w| H(s) (— s(1)
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The signals 5(f) and n(i} are uncorrelafed.
Determine the Wiener filter H{jw) that will try Lo reconstruct the original signal
s(t) from x{t):

a) generally, depending on &, (jw), ®,,(jw} and G{jw),

b) for @ (i) = 1, 8., (j6) = rect(-) and Gs) = —ms
] E

Exercise 18.17

The frequency response H (jw) nnder the influence of interference r(t) is measured
with Lhe arrangement from Figure 18.7.

a{t)

x{(t) —m| H(jw) —-é———— ¥{1)

Show thal &, (jw) = H{jw) holds when ¢, (7) = §(z} and when n{t) and
aft) do not correlate.
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Appendix A Solutions to the Exercises

Solution 1.1

a) discrete-amplitude, discrete-time, i.e., digital

b) continuous-amplitude, discrete-time, i.e., not digital
) continuous-amplitude, continuous-time, not digital
) discrete-amplitude, continuous-time, not digital
) continuous-amplitude, discrete-time

f) continuous-amplitude, continuous-time

Solution 1.2

If a hard disk is considered a “black box”, a digital signal is saved on it as a series
of ones and zeros.

If, however, the inner workings are considered, it must be more precisely de-
fined:

The bit-stream to be written is digital. The write voltage has discrete ampli-
tude but is continuous-time, so it is neither an analog nor a digital signal. The
magnetic field strength in the disk and the read voltage are continnous-amplitude
and continuous-time signals, i.e., analog. The read is converted by recovering the
clock signal and a hard decision into a series of ones and zeros, and is a digital
signal.

Solution 1.3

a) w1 : analog, as it is continuous in time and amplitude

x2 : analog (although x5 only changes its value at certain points in time, it
is defined at every point)

23 : discrete-time, discrete-amplitude, digital
b) System 1: linear, time-variant, analog, with memory, causal

System 2: non-linear, time-invariant, neither analog nor digital, memoryless,
causal
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Appendix A, Solutions to the Exercises

Solution 1.4

a)
b)

c)

h)

)

linear, time-invariant, memoryless and therefore also causal
nen-linear, time-invariant, memoryless, cansal

linear

time-invariant, as the response to an input signal shifted by ¢ is the same as
the ontput signal shifted by 2 S{zx(t—)} = «(f—r— T} = y(t—1)
causal, as the output does not depend on future input signals

with memory, as the delay requires that the signal is saved

linear
time-invariant, see c)
not causal ag the output is equal to the input signal in the finure!

with memory, as the response to the input signal also depends on other
points in time

Hnear
. . de(t—v
time-invarisnt as S{z{t- o)} = _(d—t"_) = y{t—z}
with memory, causal
linear
time-invariant as
vl =ttty F
Slat— =g [ ol -oydt/ "= "5 [ xlpdp=y(t -z}
t=T ~1T~T

causal
with memory as all past values from ¢ = 0 are saved

linear, time-invariant, causal, with memory

linear
time-variant as S{ax{t—- )} = st — - Tt} #ylt - O) = ax(t—~T(t— 1))
cansal, with memory

linear, time-vartant. nol causal, with memory

1

cannot be realised
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Solution 1.5

a)

b)

)
d)

S, is linear as the response Lo a linear combination of multiple inputs
S1{Ax, () + Bop(8)} = m - (Az, () + Bay(t)) - cos{wrt)

is equal to the linear combination of the individual response

ASa, (1)) + BS {zp{t)} = m - Aeg(t) - cos{wyt) + m - Bap(t) - cos(wrt).
Sy is non-lincar, as

Sza{ Az, () + Brp(t)} = 1+ m{ Az, (8) + Bwe(t))] - cosfwrt) #

A8 {x.(2)} + BSy{mp(t)} = [A + Amur, () + B + Bmuxy(t)] - cos(wrt).

81 varles with time because

Si{x(t—TY} = ma(t —T') -cos{wyt) £t —T) = mue(t—T)-coslwr(t—1T)),
the same holds for Ss.

&1 and Sy are real as from z(t) € IR we obtain: y2(f) € R.

&y and 83 are memoryless, as the input signal is only used at time £

Solution 1.6

We know from 3. that the systemn is not linear and time-invariant at the same

time.

 could, however, be eithor one of the two, and it is not possible to say

which.

Solution 2.1

a)

b)

Show thaf:
LAyt dhaft- 7
Pk o N 1
_ dt di®
1= k=0
it [(t — ¢
Substituting variables ¢/ = ¢ — 4 d(tdt ) 1 = dt=dt,ie

the substitution leads to the above equation.

If 3, is the systewn response Lo xy and y» the regponse to z4:

B T2 ! Rl
Zakd('}.?]'i‘afg 42’)’{1(7)-{-82,_‘} 0)

i k
s ek it
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Solution 2.2

3rd order system. Direct form 11 is canonical as it uses the winimum number of
energy stores (integrators)., By setting the cocflicients ag = 0.5; o) = 0; ap = ~3;

oy = 15 byy = 0y by = 0.1 and by = 1, we find the block diagrams shown in Figs,
2.1 and 2.3,

Solution 2.3
. d.’jy dzy

1apty 4y
e

+2y==x

Solution 2.4

a) Block diagram

f (¢
x(f) b I, ¥(?)
d d
dt dt

L—*‘"' b} ~a‘; Rl
‘1}
di
]

~Uhy

b} A canonical form is found by interchanging the left and right sides and
using a common differentiator. It does not have to fulfill any conditions as
differentiators with the same input signals have the same output signals.

Solution 2.5

a) The state-space representation is given by

-50 0 05 0.5
%= g - —-02 |z + 0 1z
130 190 0 0

y={0 -100 ©lz
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If every state is put at an integrator output and an adder &5 connected to
every integrator inpitt, a signal flow graph can always be derived from the
state-space represenbation.

R

Py _dPy dy
—= ¥7— 4 200y = it
b)(]ld{47d + 10 s Y
c) Insert the coeflicients ay = ~0.1; a1 = —7; ug = —107; ay = 200 and

b;:; = HM) into Fig 2.3,

d} Both are canonical,

Solution 2.6

a} States at the ontputs of the integrators. We choose: 2y at the outpul of the
lell iutegrator, zo at the oubput of the right integrator.

os-(3 e+ 1]
o[22 1]

&) Parallel form

e} a£Qand b#£0

f) Not complelely abservable, not observable fromn any of the ontputs as every
row of € has a zero.

Solution 2.7

0 1 0
aas[5 4] e [t]
c=[-3 -8] d=2

b} The transformation will be carried out with a modal form of A that is not
1 !

. 1 we obtain:
—2+43 -2-j

in general unambiguons. With T = [
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L[ -2+ 0 - [ 08
A=l o ——2-j] b‘[ 0.53']

e={13-8j 1348 ] d=2

The‘ cigenvalues of the system are —2 4 § {equal to the diagonal clements
of A). The system does not change its input-output behavior with the
transformation from Eq. 2.47 - 2.50.

¢) It is controllable as all elements of b are non-zero, and it is observable as all
wlements of & are non-zero.

Solution 2.8

oo ... 01
¢ 0 --- 1 0
a) T=T 1= :
G 1 0 6
i 0 0 0

b) The proof is easy if one recognises that left multiplication with T~ can be
interpreted as horizontally mirroring the matrix elements, and right mmlti-
plication with T as vertical mirroring.

Selution 3.1

. i .- H .. i
o () = _e(—2+jo}t R (—2ega)t + .~ 2%
Ta(t) o j2c ¢

= sp= =2 sp=-2-75 sy= 2470
ap(t) 112 = fywo,  saa = £2jwo

x:(t) 1 s1,2 = Fjwo

Solution 3.2

a) yes, b) no, ) no, d) no, e) yes, as H{s = §j2)=10

Solution 3.3

a) Cousistent normalisation for the components:

v 1V -1s 1A-1s

s = i Y e———— =1H: C: - =1F.
Bogp=t by | v

t
This yields the normalised component values: B = 1. {' = & L=12
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) {}rﬁ(s) = sR(rf-f—l - i
Ui(8) g +sL LC-s®+ % s+1
i

His) =

0282 4+12s5+1

1 1 .« .
¢). Normalising to 1s and 1V: u (£} = e cos(—4t) = —e*t + 5(’5’ ! with
51 = -3 ‘5-]4 2
1
H = = —1.25
(s1) 0.2(—7 - 724) + L.2(—3 + j4) + 1 ?

H(s,*) = H{s1)" = —0.25

1 1 5 1 _.
Q) ug(l) = 5[-.7(31){?3"’ + 5 His) e™ b= G 3 cos(48)

. t ; 4
De-normalising with  in s and « in V: ug{t) = b Vet t:os(;r‘.)

Solution 3.4
Where { < 0: gt} =0=2Ax-z(f)
t L, :
Where t > 0:  y(t) = f e*fde = -;(e” —D#M e
0 J

Since in the second case there is no A to saiisfy the condition, {t) is not an
eigenfunetion of the integrator.

Solution 4.1

{1—5) o {—3—s} _
a) X(s / = 72 b[e et dt = o
(N n
ROCAR(’.{S} : ROC:Re{s} > 0

L)

b} X (s} = / j—,lé(e-f"-—e-ﬂ)e'”f-dt

X )
2',1—/?-(""_"5]1(1{-———;1— /e{_J_S}f'dt
72 2
-

[ -

1o ROC 10 ROC
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o
(3) )((5) = fe(Q-..s}t dt = I . e(2—-:¢)T
§— 2
b
e
ROC:Refs} =2
o o
. 1 . 2 1 X
d_) X(S) = ftemws)t dt = [r . 5 elz—s)tjl _ 1. > E.'(:z_ﬂ'lt it
-8 5 _ -
Iy i} 0
rr—
ROC:Re{s} > 2
3 .
1 1
= 0 - “1) =
(2”5) D (s —2)?
i
)) X(5)= [ S(¥ e et
-0
0 0
1 1 v 9
= (2—s)t _ = (-2—sit ) S
2 f Tt 3 f ¢ dt a1
iy B

ROC:Re{s} <2  ROC:Re{s} < -2

Solution 4.2

Right-sided functions have exponential order, if M, C and T can tound such that:
e (8] < MeSt for t > T

a) yes, e with M =1, C=1,T=10
b) yes,eg with M =7, C=5T=1
cl ves,eg. with M =1, C=5,T=0
dy ves,eg. with M =1, C=6,T=10
el no

f) yes,eg. with M =1, =0, T=0

Solution 4.3

Firsl determine M, C, D and T so that [#(2)| < Me®*t for{ > T and |z(t)] < Me?*
for i < —T. The bilateral Laplace transform exists if the region ol convergence is
not, empty, ie. if O > (.

) M=10=0D=0T=0= ROC={}
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by M= 1,C = 0,0 =any value, T =0 = ROC:0 < Re{s}
¢) M=1,C>0D<0,T=0== ROC=]}
d) M=5C=2D=2T=0 = ROC={}

Salution 4.4

e )

Eq 4.1 C{z{f)} = X(s) = /I{t)e-st(ﬂ
L{AJ(t)+ Byglt)} = /[Af(i]wL-Bg(t')}e_“dt
A /.f(i)ff"“dHB f.f;(t)e‘“dt=A,::{f(t)}+3£{g(t}}
Solution 4.5
L 2543 .
) Flo)= oy OO Re{s) > —1
b} G(s) 3+ ROC : Re{s} > —~1

TG s+

52 + 168 + 11 55+ 11

R P TP Ty Sl Py P

-2

ROC » Rels} >

Solution 4.6

Eg 4.}:  Lizft)} = Xis) = f 2{t)e ™" dt
a) subst. 1 =1 — r, 4 =1 = dt=d¥
i’
T+oc r.‘sr;}
X(s) = / 2(t' — e D g = T f £t ~ tye™* dt’
T—rxa %

TR = [ 2l =0t = L )

el ]
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L) subst. s =5~

X(s —a)= ] x(t)e= 5 M gy = / e ae(i)e™ s @t = L{e“n(t)}
Solution 4.7
Gl 4.1:  L{z{t)} = X{s) = [ z{te™ dt

dit
subst; ¢ = g, primk dt=adt’, a#0

L 4]

Bl

o
X(s) = / elat e . adt’ = o - sign(n) - ] zlat e dt!
—goo )

‘,,f
subst; § = —
a

X (%) = |a] / :J,’((j','{,")e-—s’t" = |ﬂ=|£{:{'(m‘;")}

XD

Solution 4.8
: 1 .
L o(t)=c(t)o—e X{s)=—., Refs}>0
5
Ii. with the shift theorem: i
e s{{)o eX(s+a)=-——, Rels}>Re{-a}

:s‘ +a
IT]. first scale transform pair [ with @ = —1 in time:
1 . =1
g{—t) oo «X(—s)=—, Heys} <0
i .
—g{—t) o o ~ = X(s)Re{s} <0,
5

then use the shift theoren:

—e "% (—t) o—e X{(s) =

g Re{s} < Re{-a}

IV. see Eq. 4.48
V. see Eq. 4.49
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| o
V1 sin{wpt) €(t) = 3{03“’“ — e e(3)
o Vi
:
1 ; 1 1 i )
— aFwal _ = ol iy = e [ e —
£ (eretson - ztere)) = % (5~ v
o
= T T el 0
popn Re{s} >

Vil similar to VL

Selution 5.1

i i
: - jony )
_li‘i ds = / M E{.&; s == / ﬂ-ﬁ’giii(’__l .5 Qﬂ-j ejzfrr; dr
w §— 89 Jos(v) — s \ dv ] § efmv

it}

1
= 271'_}'] Fisg 4 8™ du = 2] F{sg)
0

Solution 5.2

Fis) = B C

.s+1+,<;+2+3+5

. L
1: . 1 S ool el rea——— :1
A= I FE Dl oG
- ) 2—2s

= JmFE G+ = rmTg T2

225

R S )

p—
)

F(s) = o e
: | ;

FRy = et 27 £ e e(t)

Solution 5.3

. Ay As Ay b
. F 8) = ——— e i e
o) Pl) = =9+ o ! (s+1)F  s+4
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. 28 -1 1
B=JmFO 6= o) =5
-1
- im s) (s 3= -
Ay = 0 l [F(t)( + 1)) = _‘_4) . 1

Ay = —1~ hm i[F(S) (1)) =

(s +4)2
—— g | —— 1
s+ 42| . -
| L e 10 {s+4)?—2(s+4)-9
A= E?.SE’TEI ﬁ{f (o) (-4 1)) = 2 (s + 4y .
1 -8 1
2 (s+4)7) 1_ 3
1 1 1 1 11
F(s) = —= - :
Eq} 3<9+1+(3+1)2 [s+1)3+33+4
s
Fi) = [—fet+te™ - Mt + L1 e()
A, ‘11 A‘) A;; I
W EE) = S T e T eriy T
B= % and Aa = —1 can be calenlated as in a).

Bauating coefficients is then possible with only two nore equations.
25— 1=A1 (s + 1) (s +4) + As(s+ 1){(s+4) + A3 (s+ 4} + B(s+1)*

. 1
$: 0=4A44+4B = A =-B=-=

3
1
¥ —1=4A, +4A,+143+B = Azmz(-lﬁéAl—-fiAg—B):l
¢} With F{s} as in &) the equation system
0 = A4 +8
0 = 64+ Ay +3B
2 = 94;+54,+ A3+ 3B

—1

4A; +44: + 44+ B

must be solved.
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Solution 5.4

A A*
WES = Tt il
_ _ oy S5T3 _=j2+2 1 g
A_ﬁ_.llrﬁ,ﬁ{ﬂs)(”l“?n_3+1—‘;='2 T =37
L ]

F(#) = [Ae” M2 A= o7 (=027 o(4) = et [cos(2¢) + sin(2t)] £(2)

b} Since there are no poles apart from the conjugated complex pair, equating
coefficients is trivial.

Fls)= —3tB __ s+3 s+3 _ (st1)+2
VTE 245 215 (424 0rd (A1) 4D
X (s+1) 2
F(s) Grr e T riEe e
.
’
f(t) = e teos(2t) + ¢ sin(2t)) 5(2)

Selution 5.5

Fis) A L Bs I
] =m0 e e b e
Toe 2 g2 b wp? 82 4wy?
% -2
N =
S=—

B and ¢’ must be determined by equating coefiicients:
(Bs+O)s+2)+ A{s* +wo) = s

) 2
32‘- B‘J"A—_—-O [
= B 4+W(;2

P W Awto0 m O Law2e GO0
2 44 wny?
1 L1 5 “o
F(s) = 51-2 +t25 F ot
n(.) 4—i~u.u‘a*E s+ 2 F 52+ wg? +w052+""’02]
&
iy = ——=[~2e ™% 4 2cos(wat} + wo sin{wot)] ()

4+ wl,"l
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Solution 5.6

(s++1)(s ~2) 4 B C D E
F(s) = _A,. B
(s) s+ 2Ms+3)(s— 1) 52+‘¢+e1—2+e+-3+s-—1
, 2
.A == 7 ZF ]
SEE) = =3
1 1
G.‘: E; = —— T am =
( ymen  —12 73
10 5
D =1{s +31F{ _— = e
(#HIFGY m 5=
. -2 1
= (s~ 1)F(s)] = -
(s~ DFE)| _ =75 =75

, 1/3 B -1/3 5/18  -—1/6
Flsy= 224 2 4
(%) 32+s+3+2+3+3 g—1

Determine B by evaluating F(s) at the zero 5 = —1.

. 1 1 5 1 B 2
E-T-—']_ :——B —— —-‘-‘-—? —_— = — = —
=1 =3 sttt Pryp=-0=F=y
/‘ ‘2.!’9 1/3 53/18 1/6
Then: F -
e a) = 52 Ty § s+2 543 s-1
Inverse tra.xmfm'mation using Table 4.1 yields:
2 1 ) . 1
t“_ t ____'__—2!'. __:—53___££‘
f(&) ( 53¢ Tigt g€t
Solution 5.7
F(s) = -3s% 125 — 165 -5 B A + B N C + D
T+ 12 +2)(s+3)  (s4+12 s+1 0 s+2 543
L= {5 2 : I = -2— =
A={s+1 F(b)“:_l 5 1
C=(s+9P(s)|  =2=3
T MNeme 71 7 F
_ 16
D= (s 4+ 3)F(s) T T -4
1 B 3 4

Fs) = -
(s) (s+-1]9+s-+--1+s—|—2 2+3
A trick to calculate B is putting some value of 5 (but not a pole} into F(s). In
this case #(s) is evaluated at s = (0.
3 4 7 5
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1 2 3 4

B Sl sy e R

Inverse transformation using Table 4.1 yields:

FEy=((t~2e +3e"% —4e7%) 1)

Solation 6.1

1
— 1
H ez 3G = ‘
() R+sl+ -;%, SRC -+ 82 LC +1
5 o 5

= . sp= =142
242545 (8= 8,){s—s,%) p T

1
With {f) o—» = we obtain:

B A B B*
Tos{sg){s— s 8 s—8, 8- syt

Calculating the partial fraction coeflicients:

A= i _ 5 _
B (S - “’\p)('-"' - -"'-_n*) s=0 SpSp* -
) 5 .
b= *‘“‘"‘“—”l = e — = 0.5 + j0.25 = | B| &!®
(3 — Sp*) 8lgma, (Sp _ .5'3,*) 5 a4 i ](’

with |B| = 0.25/F and © = 7 + arctan(%)

Using Table 4.1 for inverse transformation gives the step response
y(t) [A+ Bese' + B* o] s(t)

[+ ]B|e* (ef.l'6+3'2i-) 4+ el --j"d—j?t))] eft)

= [A+[Ble™" 2 cos(2t + B} =(t)

il

i

Solution 6.2

The gradient of the tangent at «(0) = 1 is E-Z%
it be=o

intersection x = T.

This yields an
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Solution 6.3

a) His) = gETLFN oL =9) s - 25 42

(8 1+ }}(q T i‘”"—}j = m, second order S}'St(’.ln

§—1 1
b) H{s) = K = I S ‘der syste
) H{s) T TP ey Y ST second order systom
. s41 s+ 1
¢) H{s) PO K L second order system
d) H(s) = K>3 d order syst
) = K second order syste:
3(5 T 3) N secOndd ordaer By alenn

Soiution 6.4

s2hds+d (s+2)
8) His) = Y2501 (s+1)2

Pole-zero diggrim of the transfer function:

Im{s}
2y @ ‘}

_E ? l : ReTs}

W) His) = s°+43-21 (s=3)(s+7)
s+ 35242554+ T75  (s+57)(s — 55}z +3)

Pole-zero diagram of the transfer function:

im{s}

Solution 6.5
From the pole-zero diagram we see that:
P -1
= K’ . o 1 - = K’ r j -, I
(s+1-=54)s4+1+37)(s+2} 5%+ 4s% 4 305 + 52
Ascertalnment of K:
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H(0) = K:—; =41 = K=-52
¥

—b2s + 52
From H(s) = i

53 4 ds? 4 30s + 52

d3'q d*y dx
- -+ 5 = =hK2— 53y
T + 4 itg '30 =52y 2 + 522

Solution 7.1

we determine e systerm differential equation

a} The signal is also already known before ¢ = 0. so it is not an initial value

problent.

b) 1t is Y(s) = H(s) - X(s) with
1

His) = L Re{s} > —1

- W 1 \

Xlg) = - 5 —2 << Rel{s; <0
X(s) Tk + CESIE 2 < Re{s} < (

For —1 < Re{s} < 0 it follows

iy 1 wp 1

w
(s + 1) {82 +wd) (s D{s+2)2

= e —— o ————

51 s4juy 8- g s+1 s+ (s +2)

Finding the partial fraction coefficients:

A B B ¢ D E

A=ts H)(Tﬁ(ﬁ??"?@ pmnl ITTL?
= (5 4 jwe_i)m*ﬁ%ﬂz‘“mgj s _2w:_ 5 = ;zg:}T;
= (st )(a—i—l)”](_—2 s=—t !
b= % © *‘”%fn—imﬂ B
E=(s+2) s+--ﬁ%5+2)215__2 1

Inserting the coefficients gives:



482 Appendix A. Solutions to the Exercises

Vis) = 22 . t (~wo + 7)(8 — jwa) + (—wy — j)(s + jwy)
: 1+w? s+1 (8 + W) 2wk + 2)
1 1 1
s+1 s+2 (s+2)2

wy 1 s, 1y, .1 i ]
1+wi \s+1  s24wi  s2+4wd s+1 s+2 (s+2)?

Inverse Laplace transformation of Y{s):

Wy

y{t) = 1T [f’ (1) + cos{wot) e(—t) — ;13 sinfwgt) E(-—t)} +
’ 4]
+{e"t — e — e ) 5(1)

’ &0 — .

14 )."‘—vt---le“t e(t) +
[( o) e e
Lo
U+ W

1l

_}.

[t;ns(_w{aﬁ) - ;1‘—0 sin(wut)} s(~1)

Observe that for the inverse Laplace transforin, the region of converge is the
intersection of ROC{H} und ROC{X}, t.e.,, ROC{Y} = {s] — 1 < Re{s} «
0}.

Solution 7.2
a) We wish to find the sclution to the homogenous differential equation §,(t) +
3y, (t) = 0. Using the basic approach y,(#) = ce™ yields:
a-ce 4+ 3-ced = ) —a=-3
yp{t) = ce ¥, t>0, Ve
b} The particular solution is the response of the system to
2{t) = 10 cos(dt) = Ser¥t 4+ 5e~7% = gy (1) + 22(t)
with  mya(t) = 5e®¥, fort >0

Because of Hnearity:  ,(8) = wi(£) +ya(t)  with yy2(t) = S {ury 2(f)}
Using 41(f) = Y1 715, ¥, € C we obtain:

) +3n(t) = xlt)
P 1
r _ e
Y o= i e = 1-77® with ® = arctan - ~ 53°
347 3

Similarty, with 1, (#) = Yae™ 71 one obraing:
5

2= 5

Y oy
=1.¢% =Y
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Putting in V; and Y5,
ys(t) = eI =8} 4 o= H48-8) — 9 cog(dt — B) is obtained.
¢} Complete solution:  y(t) = yn{t) + ys(t)
Determining o from the initial condilions:
{0} = vo = yn (0} + 4, (U} = ¢ + 2cos(B)
—_——r

=1.2
=1y — 1.2

Now the complefe solution can be given:

y#) = (woe ™ <+ 2cos(dt —0) — 127 )e(t)
T - -
internal exlernal part
part

Solution 7.3

l
&) His)= =
hy X{s) = 1().ﬁ_1_6
i e 1
Y(s) = H(s)X(s)+ =5l 0]
10 5

gl s T et LUl

(using Eq. 7.16)
¢} Partial fraction decomposition:
A B Bt

IT 5 X 8] = —— —
(8)X(s) “3+3+___s—i—_-j4 e
A = (s+RHEXE)] =210 g,
f 3 25
j —j4-10
B = [(s+j4H(s)X(s N AL
(s +IOTGXGN| | = i =70
. 1¢ _ 3 3'4 B ’ o
2(3 _ 34} = T 0.6 4+ 50.8

Inverse sranstormation:
1
y(t)y = L£7HH(s)X({s ot
y(t) {H(5)X(s)} + pgrt
— [‘4 e—-.‘.it + Be—jzlt 3 B e,;ult] <‘:"(f) + ¥p e-.‘i! 50.)
e ——

Conversion to cosines
= B and B* it magnitude and phase
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W 4 o .
B=1e°, @= a:{:tan(—j) 22 (.37 =2 h3°

y(ty = (goe ™ 4+ 2cos(df - 53"} —1.2¢7Y Ye(i)
w - P —
internal exterual part
part

Solution 7.4
Ba. (7.15): ayg(t) + aoult) = Fi2(t) + Sox(t)
Yor unilateral signals that start at ¢ = 0, with (4.34):

§1) ome sY(s) - y(0)
y(t) o--e Y{(s)
E(t) o—e sX{s)— {0
x(t) o—w X(s)

Tutting these pairs into (7.15), vields (7.16)
18V (8) — g(0)] + oY (8) = 18X (8) — 2(0)] -+ Bo X (s)
Solution 7.5

a) Initial conditions from the block diagram:
$(0-) = 2(0)- (=2)-0.56- 4 = —42
yl04) = y{0-) + 2{0+)-0.5 + 4 = —4dzy + 2

b} Since the initial staze has been given, {7.21) is suitable for the solution, and
the initial conditions are not needed.

H{s) = 25 Re{s} > —1 from the block diagram, direct form 1T
s+1
-4
G =
X{s) = L{e(t) — te(t) + @ - Deft — 1)}
1 1 I . )
= ; - ;E + :6'5-‘3 . Rl':‘{b} =0
N . | 2 2 _s "12’0
¥ (‘?) = H(S)X{S) - (J(.‘:’)Z(U) = m—!_m-’rlj}(t —-l)w—m
2—dxe 2 -2, _,
= —- Y |
s+1 +[s+s—:1}(ﬁ )
1- 0 2 2 _s 2 T
=4 — = - "~ €
s+1 5 s s+1

u(t) = [4(0 —zg)e™" =2l e(t) + 2[L—e V] et~ 1)
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Solution 7.6

L1 s,
a) X(s) = Lle®)-elt-2)) = _—-e™, Rels}>0
2s 2s
H{s) JEIYPaE (s 4+ 1}s+ 3}
2(as +b)

Y(s) = His) X0+ i gy =

= {1 et s 2 2(@3"'6')
- ) (s+1)(s+3)  (s+1){s+3)
1 1 —a+bd  3a-h
— o 2a .
=-e )(s-i-l “a’+3)+ s+1 +3+3
. l-a+b 1-3a+bd -2 1 1
Yis) = s+1 s+3 (s+1 s--f3)
L ]

=]
() = [(T~a+b)e™t —(L—3a+ b)e ] (1) —
o G e=3-D] ot —2)
b) No, because the states are not the same: (7.58) only holds for direct [orm

[11. The relations (7.56) and (7.57) are different for each choice of state and
must be deterniined beforehand,

Solution 8.1
The response of and RC low-pass filter to a square pulse (8.7)

L PC T 7
J— P _ T - S 1

s = ¥ —tetiso LY
0 atherwise I

For Th — 0 according o 1L."Hospital:

ik

H £ -1 r. ; : L
lim () =e"F ity I = e F : - %
'_.ihlir}uy(i) ¢ (®) Tl.fnw-j() Iy eTelt) Tg.fn—*ln 1 T° <(t)

The impulse vesponse (8.4) with a = % is:
1

h{t) = ?(—_% &(t)

Solution 8.2

a) fu=e¥ 2]
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b} ff‘) =i 6“2-

. 1 . 2
€ fomg (0¥ =2 =2

1 " ._2
d) fo=—x-2.e%=¢

B

Solution 8.3

8) #a(t) = e(t)—elt—1) et —2) — = 5 (1)Re(t - k)

co e k=0
() = E_:ﬂ(—l)ké{t—R:):j;(—l)ké{t—k}
(D)
1
ol 1 2t3' -I —
T
) m(t) = e(t)-%—s(t 9) et )~ =e(t) g is(f;—%)
a(f) = .:"{:‘.)-;;——Fe(t) é-»ZE(t—ZI\)
k-‘::l
_ 5(@-%4»5(1) % S aft—2k)
N, e’ =1
=0
xp(#)
4
L
2

Solution 8.4
J) = ety = £ (1~ e(0) = ~£(0) = —8(1)
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Solution 8.5
. d .
[t = 7 clat)

Substitution: 7= at de _ = d ¢
oubstitution: = at, i =a = T =il pr
(T d _, .

f(a.) a—e(7) = ad(z)

Inverse substitution: f{f) = ad{at) = ﬁi &{t) = sign(a} - 6(t)

Solution 8.6

oo 4
y(t) :_‘,f__ flt— )ygleyde = ff(t~ T)de = ({{"(tw r)e(t ~ t)de

case £ < 0 yit) = 0
. 210 2
case 0 <t <d: ylf) = f{tw—z)dz':[tr-———} e
bl 2], 2
case 4 <t : y{t) = fl-0dr=4t-8
i
¥(®)
2
z 48
8§ e o
|
1 ; -
0 4 !

Solution B.7

ity = ag(l) * my(t)
palt) = ay(t) * w2t}
yalt) = xa(f) *» x4(t)
ya(t) = mi(t) + wylt)
wsl(t) = az(t) » xglt)
yelt} = xs(t) » ag(t})
yr(t) = ai(t) = x5(7)
ys{t) = @a(t) * ws(t)

yalt) = 1 (t) * ag(t)
Solution 8.8

The calculation is performed as in See. 8.4.3, excepl that z(z} is mirrored and
shifted. The result is, of course, identical to {8.49).
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Solution 8.9
) TO . o2
8} Hd) = I(.s): 1 _ 17 _ LC- s +1
U(s) Z(s) R+ ] RLC -8+ L-s+ R
lL + s’
Normalizing to 1V, 1mA, lms gives the values B = 1;C = 100; L = 0.1.

Hs) = 1052 +1 B s+ 0.1
T 1082 4+ 008+ 1 24 001s+ 0.1

—0.01s ~0.01s
by H{s) = 1+ — =14 ;
) Hs) f 52 4+0.01s 4 0.1 N (s +01)? +wi

h(t) = 6(t) - 0.01e(t)e 7 coswyt

with o1 = 0.005; w1 = /0.1 — 0.0052 = 1
and A = -0.01; B = é;i ~1.58-107*
w1
or
R(t) = 8(t) + e~ e(t) Ay cos(wit + p1)

with 4; =~ 0.01 and p; =~ —89°

¢) ROC{H} : Re{s} » —o. Right-sided since A(t) is the impulse response of
a real system and must therefore be causal.

d} The system response #(t) converges if ROC{/(s)} contains the imaginary
axis. Since ROC{I(s)} =ROC{H{(s)}NROC{U(s)}, ROC{U(s)} must also
contain the imaginary axis. So op > 0 and wy can be freely chosen. The
input signal can have any amplitude, but must decay over time.

Solution 9.1

2) Fla(t)} =

|
8\-\.8

oC
e~ I10te (1) eIt dt = /e"j(w""")t dt  does not converge *
b

Lieldl} = sl Re{s} >0

/ i ’ e — eI 2sin(bw
) Fla(e) = et [-be] <SS
v -5 Jw jw
5

= 10si(hw)
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His 5 — " .
Clxt)} = Lie{t +5) —c(t - 5)} = £ P fT , s €C, since z{f) has
finite duration.
o Flet = [ snerta= o en ol
o ” | - 4| 4
. 1 1
Clait)} = L350 =71 . seC
4 4
23] G
d) Flz(t)} = [ e(—t) et dt = j e i does not converge *

Ll = -1 | Refs} <0

$
e) F{x(t)} does not converge, see a) *

L{z(t)} does not comverge

*Caleutating the Fourier integral does not provide the solulion because the integral
will not converge. Nevertheless, the Fourier transform does exist in the form of a
distribution.

Solution 9.2

b} and ¢}, since the region of convergence of the Laplace transform contains the
frnaginary axis. {Lying on the border is not sullicient?)

Solution 9.3

The Fourier inlegrals from Exercise 9.1a, d and e do nob converge to a function.
for a) Use the modulation theorem on pair (9.7):

rf —twnby — e 1
Fle(e 70} = md{wtwy) + J"_—_Hm(w+w0) .

for d) Use the similarity theorem on paix (9.7):
1
Fle(—t)} = 7w} — —.
i
for e) Use the principle of duality on pair {9.17):
Flemwotl = anflw+wg) .
The duality prineple is used as follows;
it -1) o--e eIvT
eI e 2m0(~w — Ty =2mb{w+ )

Where r is any constant that can be appropriately replaced in the result by wy.
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Solution 9.4

L] . o .
Fa { 1 } _ [ - 1 ea—l';wff di ?'-__'__'r_';-ﬁ f ie_-'-‘w( T4n) dr =
t—ua . i—a T

e o
- £ T
= lim / lr:"“-"“"{ TH) dr 4 f J—e“‘-""’{ el dr| =
Pl T 3
w7 J
T T
= lim 71 / 1 (e"'?‘“’r - e-”"“‘f) dr= lim —2j.¢77%° sinwe) dr =
5 c = z
€ ’ £
—gm forw >0
=g IV 0 forw=0 = —jmsignfw)e ¥
g forw <0
Solution 9.5
a) Zeros of si{x) at 2 =nw, ne Z\ {0},
1
here: wgn - da < pr = Wy = 1
b} Only calculate the area of the triangle in Fig. 9.6:
) 1
f:z:(t)dt: 5-1-8??:471’
-0
€)
txd(r
ey
SN
f"f \.‘\\
i ') ‘-\\
el .'.':.-*:. ;«{—v—- -- --\\\ B of: e
Br > _~dn Grr - Bx 12x
Solution 8.6
- T oot [
si{1078) oy oTeck (‘_)ow)
S(107(t+T)) oo orecs ( Q:ﬂ) T = X (jw)

5)
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| X(en! arg{ X(jw) )

- A
107 107 107 _M SM{M i
=

1£1X| =90, no phase has been defined; write nnll.

b}
Re{X{jw)} Im{ X(jew) }

N /\“‘V\

»1'{).:;\/ l \/mn T \/‘l

Solution 9.7

5345 as+1
Al = i (s-l—( 1) --:42
L{X1(s5)} = Se™t cos(4¢)e{t)
Since the ROC of X|(s) conlains the imaginary axis:
FoH o)) = L7z () Humyw » 50 2, (1) = 5e~F con{dt)e ()
Ko (3w = s1(2w)

ro(t) = %rect (:—l)

Xy(gw) = 8i*(2w) = si(2w) - si(2)

: f = —raet < —rect - — . 41—t -
r3(t) e (4) *419(T (4) T 31—t for<cted

with Re{s} > -

0 otherwise

Solution 9.8

a) Conjugate symmetry, Le. real part even, hnaginary part add:
X(=pw) = X*(jw)

b) Real part odd, imaginary part everw: X (—jw) = —X*(jw)
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Solution 9.9
From () = Refay(t)} + Relz, (6} + 3 Im{w (0} + jlm{x,(£)} it follows

8)

b)

<)

ya(t) = RB{:B.@(’E)} - Rﬁ{xu(t)} + jIm{.:c_g(t)} - jhﬂ{"ru(t)}

L

Yaljw) =Re{Xy(Gw)} - Re{ Xu(gw)} + jim{ Xg(jw)} — jIm{Xo{juw)} -

Both odd parts of X (jw) change sign; this corresponds to changing the sign
of the argument: Y, (juw) = X{—jw).

It is sutficient to write down the sign of the four parts.

yb(t) == + - + v — Ce —
e S
. I -—-—""f‘)%\““'"‘*ﬂ
Yolgu) = + .. — .. = . 4+

To produce the desired change of sign {+ — ~+), the sign of the argument
mast be reversed (4 —+—) as well forming the complex conjugate (++ ——):
Yalgw) = X (=juw).

Ye(T) = 4 . = L - R
I e f”__,_,,__.-o

- T

YVe(jw) =+ + - -

Both imaginary parts change sign: V.(jw) = X*(jw).

Solution 9,10

y(t) = [=(t) + m]}% (e7mt — gm3erh)

with [2(£) + ) o—e X(jw) + 2mrm §{w) it holds that:

Y{(jw) = }}2— [X(G{w —wp)) = X(Glw +wr)) + 2rnf§{w — wr) — 6(w +wy))) =

az ‘%{X(J"(w +iwp)) = X(Glw —wr))] + jrml(w + wp) — 8{w — wr)]



Appendix A. Solutions to the Exervises

493

Y(jow)

(7t m)

o

= N

2
(=T m)
Solution 9.11
sin{fwrt] o--e T;rr[(j Wk wr) - 6w — wT)}
Y{jw) = [ ] [ (je) + 2amd(w)] =
= ‘;{X(J(w +wr)) = X (Gl — wr))] + jrm{d(e + we) = §w — wr))

Solution 9.12

3 ! I
a) from sec. 9.2.2: £(f) o—e #8{w) + —
Jo

Duality: wé{1) + EE o-—a 2ma{—w)
2

b) frow sec. 9.3: s(¢)e”* o—e = 1
Jwta
Dmalit ! 2rg( s
\E o—e  27s(—w)e
Y jit+a wht
1
e Tt —2mje{ —w)e®™

c} from sec. 9.4.4: % o-—e — jasign(w)

Duality: —gmsign(t) o - Q?T-L

2 L
sign(t) o—e —
Jud
Solution 9.13
J—'{o(t)} = [ Aty it = = d (p_-“”‘ =
- a - ]If,?ﬂ = v

[

To cal(:ulate the integral, the rales for derivated delta impulses (8.23) arc used.
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Solution 9.14

dX (jw) d ]o st
Tt = ——— T(t)e™ 1t dt =
Gy~ dga) ) .

Solution 9.15

(1) - (—t)e ¥t df = F—tn(i)}

, dz{ty 1 o o
B = e+ T) - () 4+ et -T))
da(t) 1, o o
e = gl T) - 280y + -1
! ! : i

In doing s0, the differentiation theorem in the time-domain {9.86) and the
transform pair (9.17) are used.

b) @) = Hﬂ*‘t (%) ’ "e"“(%ﬂ

o
.

X(jw) = H:rsi (%).m (gﬂ = re (%{)

Solution 16.1

a) 20 lop10 =20 AB
b} 80 dB

¢) 348

d) —34 dB

e) 6 dB

Solution 10.2

+ -PGU. I Ejr:?n
With 7= = L—;

m

we obtatn:

) {-’ruui- - 85:_ 18 dB ])) %“.‘1 = \/§£3 (IH
L'Yiu "]in

F, T
Note: The forzmla V = 10 log —=2 can also be used to calculate the amplification
i
directly from the power ratio. It gives the same result as above.

Solution 10.3
Magnitude V = 20 log |H{jw)} = 60 dB —20 log viw? + 100% dB
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Phase ¢ = arg{H (jw} = — arctan Sl

100
w 1 10 100 1% 0% | 100k
H(s) |10 | 90— | 65-35 01—y <j01]—;0.01
V[dB] 120 | 20 17 0 —20 | —40
@ | 0| —6° | —45° | —81° | —90° | —90°

Solution 10.4

CEFO FRUE S 10
tH(i10)| = ‘ _ =
10 {G10}710 + 1007 10 - 160

2 log 1072 = 40 di3

Amplitude sketeli: Proceed as with real poles and zeros. (Sec. 10.4.1).
20 log |H| in dB

=1072

¢
. 4B
o Qdic R
; dB |
) =20} i
40 - j \%ﬁ‘\”i‘_
i :
—Hi) | ' R
01 1 10 00 1K P
Phase sketch: Proceed as in Sec. 10.4.2.
arg{ H}
1 0.1 1 10 100 1K @
o® - - o -
_459
Ty

Solution 10.5

m
(2]\.» {2)/[ -~
~1Ei) l’ 4
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arg| i1}
Iy

180° |

00

0,1 { 10 100 iK @

Solution 10.6

. ¥ (s) Lo/ 999 1 [ ¢4 1000
a) h{t)o—e H{s) = - {1 - - $ £ 1000
A S 5(10( s+1) 500( s+ 1 )
—34 dB 1 10 100 1P "0
1 1000
Y Ay e e 256 (T
[H (0.1} 0 3 226 dB
arg{ #}
18t = 1)
1‘550 e o r
000 PSSO,

by B ois: y(t) = |H(Gwo)] cos(wet + arg{H(ywo)}), where the magnitude and
phase of H(jw} can be read from the Bode plot:
wp= 001 Ha - y{l)= —2cos{wot)
wy = 1 Hz — y{t) = VZeos{wnt + 135°%)
wy = 10 Hz —  y(t) = 0,2 cos{wyt -+ 967)
wo= 0. MHz — y(t) = —2-107" cos{wyt)
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Solution 10.7
20 log | K} in dB

100 o

2
a) |H(j100) = 1—:}% = 120 B

L (7100)% |
F(§100)] = | )t
b) HH(j100)] .;(ji.oi)ﬂn)z

Deviation from Bode plol: (.99%

= (LOG01= — (), 0864 dB

(1000)2
(71000 + 10)?
Deviation from Bode plot: 0,01%

[H{31000}| = = (19999 — (.00087 AB

¢) 3 dB per pole, s0 6 dB in this case.
T1{12
Exact calealation: |H{G10)| = !(;r%i{:])_iﬁﬁ = —2—5 —6.0206 dB

This value is rounded in the Bode plot to 66 dB leading to a deviation of
£.3433%,

I

Solution 10.8
arg{Hl} a.rg{Hg}

A
1807 1

ue |-

e : 7 ) U
il I 10n w

The amplitude sketches are the same, because [I1] = |Ha].

Solution 10.9

‘ it {s+ Dfs+0.1) ok (s +0.1)
®) Hle) =10 oG 1000y~ G 100G 1 1006
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oy
i W EVI Y o3 -
ray W Cad L bl
-1 <10 -0 o

b} Amplitude sketch:
20 Jog 1AH|
I

0 dB | e e e
il dB
-2 4B
) 1 10 w w1t 1w
. . 100
H7L00)] = 10 ——— e = 10 = -
|H {7 )| fl 00 1000 =20 dB
Phase sketch:
arg{ H}
A
9°

oo
-45°F

The system has a band-pass behaviour. The maximum amplification ks
10, At w = 1, and at w = 10* it has desconded to ‘ilfj of the maximum
{equivalent to 20 dB).

¢) The response Lo =(t) for £ — oo corresponds to the de voltage gain, ie.,
|H(w = 0)|. The frequency w = 0 is not in the dlagram, but for w < 0.1,
|H| remaing constant. The de voltage gaing are 0.1 and —20 dB respecsively.



Appendix A. Solutions to the Exercises 499

Sohition 10.10

a
2100
T
— Eckfrequenzen
f} 10,/‘/
% ‘}\( 2’} = -
“240¢ 10 a

20 log |H}in dB

i

smooth 3 JB

0dB

1 10 w10 210 n
{5+ 11?2

s-(8+2-10%)

w =210 is the corner frequency. The magintude of the transfer function for

w > 2 10* 15 therefore hy a factor of v/2 greater than at w = 2 - 107,

(s)=K

(L% = (K] 2 k1L 108 = V3
7 - Oﬁ 106 - i
K=+y20r K =—2
Solution 10,11
dB dB dB
)__ — — —
a) — 20 des b) 20 o c) CI d : d)n - 20 T

Solution 10,12

The amplification increases exponentially at 40 ‘“3, when w < 100. Doubling the
frequency quadruples the amplification, increasing it by 20 logd =12 dB.
w1 2] 48

VidB] | -80 | -68 | 56| 44
HH| 15 constant when w 3 100, ie., V = 20 log |H| = 0 dB.
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Solution 10.13

2(]%51 means that [H{jw)| grows lincarly with w, Le. doubling the frequency

{one oclave) results in doubling the amplification corresponding to 6 dB. Thas
2058 = 648

de nit

eordingly. 4048 21948 g eodB o (gdB
Accordingly, 4055 = 1287 and 605 <1853,

Solution 10.14

20 Yog |Hyyl
£
2048 {

-204B 1

14 up 1
l

w) Hyo(s) =K ooy
- 1 1
1) e i ) — E I — 4]
o (0)] = || 5 L( WWi=10
10
Hyp(s) = im

b) 20 log |Hy,|

2 jog A dB

(20 legA -2 dB |

18 o, w, o 8

H.{"[P - A .

&+ uy

Target system: ab w = 10, gain 0.5= — 6dB.
20 log | Hyp|

14 dB

~0dB

26 dB ]ﬁ W= o

The amplitude skoteh indicates w, = 100,
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1
and with (20log|Hrp - Hyp|)wax == 14 dB, we obtain |A] = 5
Solution 10.15

&) In bhis question only the maximum amplitude can be stated. The values at
w =1 and w = 100 belong to ¢).

20 og | HI
3
26dB 44— —— —
dB
055
1
" 2 4B
28 dB t —\%m\
1 10 100 Tw

b} shape of H(s) fromn

—_

- Increase by 20(%'0—"} at w L wy » oxactly 1 zero at 5 =0,

- DPecrease by ‘2(];_—:;% fov w = wpy  — denominator degree= nuinerator
degree +1 = 2.

Ks

= His)= 53—F——=

52+ 2o+ wy

—Q:S(Jw:—o - a0l
E{ag

. K 510 R

N HOw) = | s : = — = 20226 dB
0wl =\ 50 10+ 107 |~ 20
= K=20-20=0220=4

4
oy VALY = T)E?——l‘z dB — 4048 = —-2% 4B

100
|H(100)] ~ _—?80—;&521:113 ~80dB = —28dB

43
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s w
% o fF= 10

.
A/
e

corner frequencies

T -fi=-10
1 Aw W 10 1
e) — =— = Aw=20 -0 _ 2
o @ Qo 50 B
Aw
w1=w0——9—:9.9

wp = wo+ 22 =10}
2
Ks
82 + 205 + wy?
The condition is o« = 0. In the real world this corresponds to the a loss-free
circuil.

£y Ha(s) =

Solution 11.1
H(= 3 B-5k) = Lok —k) = ALl (3)
B - DAL 5

Solution 11.2
1 . . ;
Insert T' = - into {11.12) ein = alll{af}o—edll ()i)

X(_}w)zéJ_l_L(w)

2ra
a=1 a=1 a=3

x(r) x(1) &6
A g e
O R B ISR I 5 N O o AT Y Y Y Y Y Y TY YT
2 0 2 4 ¢ 01 2 3 ¢ 01 2 ¢

(2x) Xyw) @) A{jw) Xy
"Mhﬁﬂ_: - | + by - d ‘2’”*_ Pee
On2n mw 0 Zn dn w i ] om w

Solution 11.3
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a) x{t) = Lt —1ty) o—e X(puw)=I1lL (;_ﬂ) e—wto

by to =0ty = % xz(t) real + even = X{gw) real + even
to = i: x(t) real, asymmetrical = X (7w) conjugate symmetry
¢}ty = :ll: X{jw)=2n %:6(;,9 — 2mpye I E =21 % 8w — 2mp) eIz
Re{ Xy} Im{X(yw)}
T T L
1—5:;0 iul'ﬁisﬁw —43:1:—2520L6in(m8;51'f;‘
(-=2m) -2m)

1 \ \
to = 5 X{yw) =2n 3 8w - 2mp) (- 1)*
it

X{jeo)

SR A
cL T

Solgtion 11.4

Xi(w) = EML(i)+lm(% (w-;-i))

T T b 2
.
21 t 11 t _, X7
w (F = 2.2 L 2 ). gt
“ilf) T 2J"‘L(2)+r 2”‘(2) ¢
p - 1
= — — — F— —gak
= (¢ 2k)+ﬂ¥6(f %) e
) (-1)*
w 1 1.
Xg(jw‘) = J_I_L(E)+3J_|_L(§[w+l))
:
3 3t 11 t
8 = Z )4z = —).e 7
c2(t) 2ﬁm‘(2?r)+2 ?TJ_LL<T-‘T) ¢

2 1
= - — - i+ — + ,_.?Wk
E 4 (t 3 k) t3 Ek it —wkle

(-1
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.\‘-Z(f)

()

PR N S

* { é #__;) n . * 1

Solution 11.5

1

1. ., 2 2
a) x, == :_}-5-...-01 — jhwot - ol = 2uyl
) () 5 (e +e ) 7 (e ¢ )

1 mt ey 1 A R
= -3 (ef"’ L (,.wn?) + 1 (eJ wul 4 e _fiwu?) -3 (e sty =37 ur’.)

-4 forpe{-7.-L1L7}
- ZAHel.u-m,ut it A” — _ill' for JTy= {_3;3}
o 0 otherwise

by zp(t) = Z B, ! with the following Fourier coellicients:

i

| =80 =153 | =57 =5 | =911 | 11,9 | otherwise
sl g l-gl-alel-=l sl o

ct x.lt)= Z Cue?" with the following Fourier coefficients:
In
| 0| =22 —4;4] -6:6| =88 | —10;10 | —12: 12| —14;14 | otherwise

sloa (o] o] o [ o | o | o
15 a2 146 2 16 £ 32 LT}

i
C,.
Solution 11.6

a) In gencral, the s of pemodic functions is only perodic if cach period is a
rational proportion of the others. The period of the summed signal 1" is then
the smallest common multiple of the individual periods, and the fundamental
frequency of the signal f = —11: is the largest common divisor of the individual
fundamental frequencies.

xy () fundamental frequency of cirenit 3wy, period 17 = fL—:H

2u(t) = 5i|1(wut}(ros(\/§w[,t] = 0,5 sin((} — \,/§)wﬂt) + sin((1 + \/ﬁ)w.-.t}]
Wi 1 -2

T
= = =€¢Q = notperiodic
we 142 ¢ i #

ralt) = ma(t) + ttns{wot)snl(\/iw“i) = sin{({l + V2wt
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2r

Period: 35 = —————
? (1 + \/2_-)wu

- 2
24(1): not all w,, are proportional, e.g., == \/; ¢Q = not periodic
why -

e{f): Pertods of the simmands are ;}' =4 and - Jr =5

= period 15 = 12

D X((gw) = 78w = Guwy) + §w + Gug) + 3w — Bwo) + Slw + Y]
Xolpw) = E[0w—(1+vV2) = 3w = (14 v2)wy)
+d(w — (1 — V2w = $w + (L~ v2hwo)]
Xy(w) = ?[fs(u — (1 + V3)wn) = 8w 4 (1 + vV2)uwi)]
Xalgw) = %[5(*‘ — twp) = 8w 4 wo) + 8w — V2up) — 8w + V)

+5(Ld — \,/Ei.u‘n) - 5(\.&' + \:"gi.d{;) + [5(.1} — '\,’IEW():] — 5(w + \/IELL)(;)
+d{w — vSuwe) — 8w + V5]
Ni(pe) = i+ 3 = 6lw — )|+ 7lolw + F) +6(w — 2)]

Solution 11.7

a) Squaring the sine function doubles the fundainental frequency, so 1t becomes
winp = 2w1

A 2
/ [ ;\.ulf — e _-J;_alr):l C—_’,lqu_m.I_ dt .

_l‘f\ [ J'u.'o{l—_u].l’ — 9 - puny gt + C—_;u,‘.;{l‘i-,u].f.) gt =

T -
/ (:,jwul 1- ﬂ}fdi f f?_"?w'mtdf + / e—_}wnt 1 +,u]|rdt:| _
] At

={0lor p#1 :OfU?p%O =0for g -1
since integration over n perwds of e7*v* equals zero
L 2T fer p=0 3 for pu=0
= =37 T fm‘ pxl = —% for w41
0 otherwise 0 otherwise
2w

b) The fundamental has freqnency vy, = -]T:



506

Appendix A. Solutions to the Exercises

2 ] o
A, = l f 1oe 77 HE g i . 1 e—3 Ut
T / T o 2‘r,u,

¢) The fundamental has {requency wy = 2m:
1

3 0
Ap=1 / z.(

LG
Lt

a

-2. /teﬂ”“* dr+2

1

o ral—

0

bl

eIty = 9. f —te~Im g 4 2.

[

(=) —

= L"""‘\ﬁml»-

i
2

4]

2 cos(2mpt) | sm(‘z'n.ul)] 2
2.2 t cos(2mudt)dt =4 , =
/;, (2mut) [ (2 p)? 21 o
=0 1 ) ——= for p ungerade
! [(%u)? Gra?) 7)Y

Solution 11.8

X(w) = 111 (—) =or Zﬁ(w — k)
Xy = z A, el Tor

Fourier series:

o

with 4, = 21 j Q"TZ w — 2mk)e I ToEw gy o

-

otherwise

{hecause of the H{-‘]{-‘Ctl\ec property of the impulse at w = {))

With Th = 2— =1, X{jw)
&

E P—g,u.w

Selution 11.9

a)  z(f) = si{mt) s(wt)
:
gy = EIOCt (%) * rect (—ﬂ)
X(w) = ;ﬂ

te it g =

1]

. l te-v;jEﬁp.r dt=2. ] : (e_'j?ﬂ-_m‘. + e._j?.rr;tt) df =
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X(yw) Xjon

| Ll

oy ! n W -2 -n | n n w

The weights of the delta impulses corresponds to the sample values of X ()
at frequencies w = S, multiplied by a factor Z -z

T 2
1 - 2r 1~/ 7
b) A= 7 X (J?“) = 1% (o3#)

Solution 11.10

r{t) = vect (i—) o —e X (jw) = 4m({2w)

L

a) a,(t) = rect (2) #2- Zb'(t — 2k) = 4, becanse 2 rectangles are placed over
Ik‘
each other at every point in time.
rp(t) = do—e X, (jw) = &wd{w)
b}y Xp(pw) = 4si{2w) - 2111 (;) = 8ei{2w) - 7 Zé(w — k) = 8rd{w), because
P

all delta impulses that do not lie at w = 0 oceur at zeros of the si-function,

Solution 11,11

a) Convertng (11.14) vields
L. N 27 A 2m 27 . 2 ) 2
Ajw) = ko(,?w)‘? ;f‘ (w - TF—H) = ?gh (w - '_ITH) Xo (J _’I—'“’)‘

where Xo(yw) is the spectruan of one period of z(f). With (11.18) the re-
quired relationship follows

2
X(w) =215 A (W - %u)
FL
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arist 21
by & Z Ape? T o—e 'ZTTZA.;,(S (:u — -_,;—;.a) = X ()
It

W= =K

Solution 11.12
Yu(?“-") =27 Z A_u(s[u-r - w(]ﬂ,} = "T(S(n.u — —6(w — ..u.«l) - — w —+ 9,_‘_;1}

i

by Xu(u) = D7 5 [(=5)" = 1] 8w — k)

3

H=

c) XoQw)=—— Z W};—])—gﬁs(tﬂ — {2k + Dwo) =
|

s

4 1 - .
;Zma(w* 2 (2k + 1))
i ’

Solution 11.13

. 1 . 1 ; 1 .
ht) = — et — o1ty oI [_6{—u.l+.m _ _P(—U,l---J}t] (1)
7 ) 2 2 o
o 1 1 1
H{s) = L)y = — [ . ]
] 7y b-l-U]—J T st 0.1+
- . Refs}>-—
Froast Lol feth
2.—
wlt) = Z A etvont wp = 1—% . period 4T
2T T
1 ) i LR
A,u. = :1? / ﬂf(t) e_Ju’“H{' dt = 4— ] e 2T'Hlt ¥
1—'2'3" -
.m il T
_ N ema T _ s 2;“} P
--jln [e F' 2" ( 2 ’“>

y(f} = Z B” g st

with B, = A, H 5 zr*ﬂ):%“(g“)‘—(&)2+.-i01~.1%“ +1.01

27

Solution 11.14

For a cyclic convelution to exist, both signals st have the same period:

Sty . period 4T 9 .
g(t) + period — W 2w

Wi
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f(t) = Z Fp e_‘j,r.i-.uuf
Ir

Using the Fourter series for 2(¢), from Ex. 11.13.

Ft) = 22(6) — 1 ~ b = s ( 5 or p#l
si{i0)—1=0 for p=0
1
_ f 3 for =1
y(” — ZG»‘" pFHwot G“ = _i for "= -1
o 2
0 oilierwisc
y(t) = Z 21‘TF G, e?ort = )—ﬁsl (”) L (-7l 4 grwaly
’ u wiy 2/2 ’
-L .
= —smiwnt)
W
Solution 11.15
- wd ¥
XoQpw) = —X(}»)*LLL(%) = _. - X( w—Zf’( M)
S X 27
= ? ;A (il — ;U-Wa)l v Wy = T
L 2m 2w Zwy,
case 11w, = —T—l = - = 4w,
X(r(f{”] 2({}2
d
i I Y, I f LY I f | ), LI W | {3
-4 -1 1 4 &g
_ T
case 2w = ™ = 2w,
2 Xa{j(rl) _
mg
Vo NI N,
1 2 3 4 ""g
. 2
case 31wy = Wy
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ILS iy

D IIN SN

G i.".l'}g
Aliasing iu case 3. Critical sampling in case 2.

Solution 11,16

0 s = g ()

1wy 2w W o7 w
X(gw) = —- T8 et (—) * ~—rect (—) =
T 2T Wy Wy Wy W
w iy -
I+ — for —wy=w=10
w!}
=y - — dor 0 <w=wy,
Wy
0 otherwise
K(jen)
1
|
—ty 1, w

b) za(t) = z(t) - %J_u_ (%)

1 T

. (E) = - X(yw) s UL (L)

X U'-"'} = 3wg
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3w, 6mg mn

Solution 11.17

@i =a I‘e(:.t.(%) o—e R(jw) = (LTSi(%)

o fwd
Ryl = |aTsi( 5 )1
b Amn < T < 27(2n + 1)
g {R{yw)} = { T 2m(2n-1) < Wl < dmn meNg

|R tiw)]
aT ’
_3n t é-v 4:11 -?;1
T Tr
i)
@ Ry ® |-y @ [Rye)
+— x4 A T -—2na
L . = 7 i l\
/ kY
' i AT, _ﬁd b -~/ \\f ~
. 2n dnm _n an dr oy 2n n dmog,
T T T T T ¥ T T 7
¢) periodic repetition of the time-domain signal with:
2w .
o) T, == NTp =28, yTp=T
[ )
() ’_Ham ® lram @y
m — 1 L ! :]—' __,_J_,_]_J_,_L,_Ii_,
-4T J? T 4r ' =T gT 2T i % 2T t
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Solution 11.18
a)  X{yw): real
X {(yw): asymunetrical

o—»
o—w

1) Bandwidth: Aw = 2wy

#({): conjugate symmetry
x(t): complex

Critical sampling: wq = Aw = [f3= L 2w, = “y LTy = L =
2% : T fa wy
X jw)
T n st 7w O w
o, m,
) wy = 3w,
‘Xﬂ(jru)
/o NI/ NN
-3 In 7 O w
fﬁrJa mﬂ
Solution 11.19
a)
Y(jo)
2 A 6 8 10 _n_
(N -t
bl
I ¢
T J—‘-LT
¥1) —4%}—* H(jw) = x(1)
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When choosing w4, 2 criteria must be satisfied:

o Anumage of the spectrum Y {yw) miust lie exactly m the baseband, so n-wy =
wp, meEIN

e No aliasing {overlapping images) may oceur:
. W)
wWa 2 Aw = s
20)
, " . s ; Ledi) : . . .
= Two possible solutions: w4 = wy and wq = —. The reconstruction filter must

remove all mmages outside of the baseband, and let the baseband pass unchanged,

Hijan)
!
-.Zn-ll()"L 2n~l1_04 -('u

Solution 11.20
a) real band-pass signal

h) Yes, becausc the allocated frequency band is a mmltiple of the bandwidth,
80 (11.42) is satished.

2w
C) Wyl = = = 2wy
Ty
basel:{and X, (p0) baseband
\ & 5 i A RS A / EREN
13 . . . o v, L
Lo ;_’ ‘. Y P Y ;f fz R
_ ; . E . L e e ] ¥ Voo
6 -5 -4 -3 -2 - 1 2 3 4 3 6 m
fl]”
o ; a, @,
Wyl = oo TR
Iy
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Solution 11.21

a) to d) are real band-pags signals = check (11.42)

a) no; W un = 38w
b} ves; whymm = 24w = Jwy
¢) yes; Wa, i = 2 = 2wy
d) no; wy oy, = 2.2wy

e) and f) are complex band-pass signals = critical sampling is always possible. In

both cases, wy mn = A = Zuwy.

Solution 11.22

According to Table 11.1, the following holds for critical sampling of real band-pass

signals:
2
F

Wy = T = 2Aw With wg = 0 and the above condition, (11.44} becomes:

Solution 11.23

a) alf) =

[a]
|

|

. 2
. 1 fwr o fwT T g Fw
AQw) = — {&1 (——2 )} = si’ (7) = (_)w“)
. L4 =

1
with t= — = —.
A0

2f iy

:u't_ o8 7t
ar 1T
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—— -
@

]
™
13] =

b) A0} = =

W
W T 5 f mhBw T o fT
()= I o (TRE) L Ty
’ 2 Wa ot 26,y wn_SL 4

Amplification decays to “ ) g2 2} = 0812~ 18 dB
atic ecaysto ——— =817 | — ] =Ubol=— 1.8 ¢
mplification 1ys Lo AG0) (4
¢) The first zero of the aperiure function should be at half the sample frequency.
Le. at Y4 the arpument of the si fanction should be equal to

wel CdAr 2 2
R N A 115 = 0.2 ms.
Solution 11.24
{ ) .
h(t) = rect (3—1) x [8(t — 0.5Ty) + (¢t — 2.514) + 8(t - 4.5T4))
h
- — .57, .
= recl (—— T 2 0) * [8(1 4 2T4) + 6(#) + 0t — 2T5))
0
i
L ]
J— U-’T:'] ATy T :
Hijpe) = Tysi -] e w1+ 2 cos(2Tow)]
1 T 1
ith T = —g a1 h= = = —5
with T 24» and 7y 5 1445
. . ) T .
[H{gw)| = Ty lsd (E;Z—O) U+ 2 cos( 2T )]
The first zero of the si ternt 15 at
_ 27 w 1 _
‘:)—?u = f—gﬂ':—?ﬂ—l&iHZ‘

T
The cos term has period wy = T -+ fo = 72 Hz. Accordingly, the zcros of the

i U
tertn in squace brackets are at 24 Hz and 48 Hz.
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‘H(;(r_;}|

24 a8 72 ' 144 [=2
: LT

Solution 12.1
y in lf. i !
a) wp(t)y=¢e" 3" cos{2nl) = i cos{27t)

1 f
xr{t) = (1) si{2rt)

1 1 T
Y¥==In-, Q=-
4'”4' 1 3

[~

1) )
LR - = for even k
5*) = ( 2

0 for odd £

, 1y* 1 Ly 7 .
Xy [?\"-J = ﬁ) sin (%k) = __5 ( 2) for odd k&

0 [or even &

1 t
ap{t) = (3) sinf107t)
1 1 5
E:Elni' Q—Eﬂ
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fula §

=1

XR(f)

(BT Y S P

1

[

o
1

o= () o (54) = (35) (59
= () ()= () o5

Solution 12.2

b} T =1In0.9 Q=20
) T=In0Yy , =gz
d) =20 Q—:g
2=l = L 0="
e} ¥= nz-— 3 1 =
3 | T
T _ 9 .7
F)*—J—O Q_Q BT“Q':]'_Q
5 T
g} B=0 : Q==-g==
¢ 3775
i T
h) =0 . Qzéﬂig
d), f). g) and h} are the same.
Solution 12.3
G
Ak = L :rlf LAt
v[k] o } X{¢
1 w
_ E_JXE:
1 m
- E_JIE;
M

-

By FRY
Yo gy

[)e =122 g0y

H}( LYY u.‘} a0
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m

1 ik :

= ;2'; E .‘I?[‘u,] [CJQ(k—”)de
H Zx

1 : 2w for k= u
Vg E;"TIH‘ { 0 olherwise
x[k] - 27
= [k}
Solution 12.4
iy e (TN ik g o (T N e { ) .
a) X(&) gt (21») e 23 (2»&) cos(Qk) + 1 cos(Q - 0)
4 4
= 14+ —ecosfl— —cos3+ ,icosﬁﬂ — ...
T 37 S
. t
b} when bk = T

-vr.ait) = ?5(* kT)bl(g T) = (QT) 7 (T>
|

; S PV A7 wl'y T . 2ap
N.(w) = QTTZTI.ect.(ﬂ)*lu.(gﬁ)_Q%:roct(ﬁ( 7 ))

X&) = X,(Gw) mit Q=wT
1

Cledy = 2 rect | — {0 — &
X(ed?) _¥1e(_t(ﬂ{ﬁ z:«r,u))

X(%)

|

|

e "

Note: Lven when ¥ terms do not appear in the resuli, the spectrum of a
serics usually is written X (&),

¢) Fourler series _X(e-’fﬂ'} = Z A ”cﬂwﬂ with fundamental period
j_l.
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A, = /X .f:J'ﬂ“')e_“'T‘”’fQ d$2
= / ey = L [e.-w“]g
, —Jur ~2

= [F— 3“2—9“‘2] = zsin(ﬂ_’r) = Si(ﬁ)

—jum
o
—j2=mn ( —)
J 5
This Fourier series corresponds to the first step of a).

d) A discrete low-pass with cut-off frequency g, called « halt-band low-pass.

Solution 12.5

Hale™) Z‘rl[k (—1)re % — le[k]e.;me—jm
Zi‘llk]e‘ﬂg—ﬂk = Hy (o)
Hy(e'™)
P o)

H; is a high-pass filter.
Solution 12.6

a) 1t is cvident [rom spectrum X (gw) that X (jw) = 0 for |w| > w,. To sample

. T
at the nyquist rate, T = — must be chosen.
w

1 . T 1 Drin
a0 (2) 3 2)

- t ¥ 13 ¥ | Y f f [
_ - —n f 2 o
ng arg —t) 2;2 i 8!2 , 2w,
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b} According to (12.13), the F-transform of a sampled signal correspoils to
the F.-transform of the cquivalent discrete series for Q = w7

Xielh

—_t — ¥ f f ¥ ¥ t
-2a - a n Q

. i 1Y
¢) Hy(e*) = Trect(;) for —m< Q<
As the F.-transform is 2r periodic, the spectrum of I1{¢#?) and Y{e/?)
arc also periodic with 27 '
According to: b) ¥, (5w) = Y (™) with Q =T

Hy (e
T
—
2 = b S Q
Yo
'."l.l) —n)0 ! I U:‘g l 2(;‘3 N o«
1 N
dy IL(juwy=K | ————e——
) Ihgw) (_jw+().75u.:,,)
1 Jwy Y
H. —_ =N ——— = N Rt
plw = 0) = N - BT, 1 = K (4)
First. spectral image al Lbw,, 1e 18&?— 560‘?% damping needed =
N=3
Solution 12.7
Without loss of generality we choose $ty € [~ 7]
oK = __/ (&l—ﬂu) R gey 21 '/271'(‘1((_2_(20) R 4O o B
i

Only one ot the delta unpulses in the impulse tram falls with the limots of the
integration.
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Solution 12.8

—k=

k It It

X (')

k

b) Ze;rs‘e.;!-‘.g,[;ﬁ] JREF Y Z:r{k_.](,jm_s'z..m—
x

Solution 12.9
Fo{ Sk} = glk Z {Zf[h gl ~ h]] e = ZZfL« A
—Zf[mz [k — &]e 4 = mee e

Shift tieorm'n
= /) Glei')

Solution 12.10

1 i 14 L7 +{¢]

= FilemGier)y = — A HE—a)

o (e )®G(") ey i I(e!™YG e Y
Inverse transtorm according to (12.16):

| T L .
— { f F(e*”")(?(e-”ﬂ'”))d-;,r} eI )

2 2n

L I T L .
= — e’ 7 [ G(f'-”“_'”}e-‘s‘j"dﬂ] dn
o g S

i
=T _

Modulation theoremn
kY

Vot )
= —2-; / F(t‘-ﬂj)e.}ﬁkg[k]d_i? - g’;‘] . 6; F(ei"“)e.-””“(,{-;?
o =T 2

wWo—Tr

= glk] - 1K}

Solution 13.1
(=1
-3

o
, u..!-:z—k — E P—f:.l:h'-+2]z—(l‘-'.+'3]
En [
. p e '
= e—.?a;—z § ( ) — G—*)a_(—l___i |:| " |€—u.|
; _ sz —eme

Xi(z) = — 42467 4z =

Xa(z)

H
I
:
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It

1] 10
3T (=08 TR 308 R — (08" )

hk—=—10 =)

10 10 08 i
=08+ Y (__:_) 1
Fi=H L=} - "

‘ 5 1R
(=081 =1 (-2} -1 o
= Ty op. toTumop b 08<lf< L2

Xa(z)

It

Solution 13.2

INE _ Y
rilkl =1 - & - )= - > -
= (3) e st = 0 s [
1\ 11
].:-— — Er—- — o= - —— 4 />_
nll = (1) d-Home o =1y <l
P 0.8

Xale) = 55~ T om

Xalz) does not exist because the regions of convergence do not overlap.
I3 1 1 1

:.!’:."-,Uifl = (J,-‘rg[k - Il 4+ a k‘g["k] S X{,(Z) = p— - a . -~ _r% ., a< i21 < a

0.5 < |2 < 08

only exists when ¢ < 1

Solution 13.3

a)
X A1) = x50 X340
: , i I;
' L “f’ \i: [ ‘ ¥ L .
ouLT 2EST t 0T 2Fys ST :
b) If x,[&] is chosen according to {13.15). then:
‘(-:{JUQUJ} = 3{;1-", [k]}s with = = ™1
=T

nlk] = e sklo—e Xy(e) = gy = Xils) = ET

e.sT‘

JX—Q(,(SJ = m da. ,'I,’l”(t) = Iz;r_(t).
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aylk] = e **sin (4;—)‘) -e[k] = % [t‘f[_ﬂ'jn‘a"}k - E(_"}_'m'h}k] £ [¥]
= 5[ = (e
. = o2
Xa(2) = 2_17- (z —jh‘_ 2 z—i-;e"z) - ";:- e—d

Solution 13.4

2 Xp(x) = 0557 414050 = & +,1)2
Xa(e) =o' 414 2= ;2+:~+1
Xylz)=22+2"41= ol +zj+ !

Xalz) = —%z“‘ + %z_l +1+ % - %za

by Xi(e#?) = 0577 + 1+ 0.5¢5% = 1 + cos2
Xo(e) =14+ 2cos02
Xa(e) = (1 4 2cos ) e 74

e 4 1 .
Xi(e®) =1+ Zcos — — cos 3}
T Jar

alel X, (eD)] /’|\‘
05 2
SR k - ' Iz
Xk} * | X,(ei) ft\
T I IT k & ' T

g ] A
1z Tk A \ S

1

xdk) 1 | X ()] 1+

- il

All filters are low-pass filters.
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Solution 13.5

a) Z{xlk—«]} = Z 2k —x]2F = Z wfp] 2= )
h=—nc p=—0c
= Z_NZ;I?[;L]::-” = :""X(z)
by 2{atalkl) = 3l (2) = x (2)
X (= d . d .
¢} -z di ) = i :r.[kl,a_}‘ = —-:Zf!k];}%,, k

= —32;[!.:}(—&'):_"‘_1 = ka:m[k]:"k = Z{kx[k]}
k i

0 Zlelh) = S el = ol = 3 e (3) -x(3)

L3 i

Solution 13.6

- 2
J’((‘_) = "_j_"l +2+ - = ( + ]—}

Xon(z) = X(ze ) = (/)71 424 2o~

{z+ 1)?

Q(l = _X—.,”(;‘J] == —=
il ol (4 )
.Qn::;: Xy =327 42— 2= Shurla
- J::
z—1)?
Q{) = 7 Xm(z-} — _:—-1 12—z = _( _ )

Spectruny: X, (e} = (e ”U})_l + 2 4 e8] =9 12 cos(SY — Q)

Q=0 Q=3 Q,=n

N

= N> a 2 n 2

Solution 13.7
X(z)=Z{2[kl}, ROC: lz|>05

Then it follows with



o
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lincarity: X1(z) = kX (), ROC- [2] > 05
shift Lheorem: Xo{z)=z"%X(z), ROC: |z|>05

modulation theorem: Xy(z) =X ({—:’j——) . ROC.
— (¢4

= 13| =0.5- ¢Relal

Solution 13.8

The location of the poles is the deciding factor (see Sec. 13.5).

I. No poles except al, wfinity = fimte, ROC:|zj <
2..3. No poles except at the origin = finite, ROC.0 < |2]

4. Hy(z) = 2 +l';);) = nfinite, ROC - [z] = 0.5
z—05
2(z—1

3. Hy(z) = Ay = finite. ROC:0 < |z]

e

Sclution 13.9

Because the series arc infinite, the inverse transform 1s carried out by splitting

partial fractions of —)sz)‘

Xi{z) 6 2 i

z oz 22 2405

2 Gz

/Y = 6 —_ -

2) z  =+05
o[kl = 65{k] — 287k — 1) — 6(—0.5) e[k]
Xelo) | 4, 43

z = z+05 0 (24 05)2
Xa(z) 1 1z n 3z

alz) = —

B x4+ 05 (z+05)2
r2k] = —4d&{k] + (1 - 6R)(—0.5)[4]

Solution 13.10

a) Ho(2) = (= 1)(22 4 o+ 1) = (z ~ 1) (+ 3 ‘”\/73) (‘: + % -J%i)
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Zeros: = —11 oz, = ef\T

@ 4 Im{z)

Solution 13.11
Hi(z)=A (7 —el B ) (z —e 08 ) = A(2* +/32 +1)

halk] = Ak + 2] + VBAS[k + 1] + ASik]
II]\(Z)

Hyz)= =202 = holk] = AGlk+1] + V36[k] + d[k ~ 1))
Ha(z) = zHi(z) =  halk]= AQGE + 3]+ V3d[k + 2] +d[k + 1])
hiky hyjk] hyik]
11t J_tl_ Rl L\_
-2 -1 0 -3 -2 -1 0

The difference is a shift and a constant factor
Solution 13.12
a) x[k] = g[k] ~ 2k —r — 1] + <[k — 2r - 2]
with thie shift theorem: )
LY w111 — z —r=1 ‘,.—2?"—2) _ ('31 - 1)2
}\{N]—Z{.E[Ll}—— ——'—3_1(1—2.:. + z = 327__'_1(;;_1)

b} double zeros at FT =1 = s, =¢ "o = 0,1.2.....r
The single pole at z = 1 iy nullified by o zero at z = 1.

pole with multiplicity of 2r + 1 at 2 =
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lm{z}
1

e
\‘ Re{z}

\
NE|
c)
Solution 14,1
a) LTI
b) LTI

¢} TT, not L, since  S{xy[k] + ws[#]}
S{alk]} + ${zalkl}
d) L. because S{z, (k] + 2k} = a*z [k] + a¥za[k] = S{x1[k]} + S{x2[k]}
not U1, because S{xfk - N|} = o*xlk - N} #
ylk — N = aF¥z[k - N|

@+ k] + zalk] #
2a -+ [B] + 22k

e) LTI

&
f) L, not TI, since S{z{k - N|} = Z rie — N1 #
u=0

kN %
Wh-N = 3 il = Y eli- W
=0 h=N
&
g} L. TL, becanse S{x[k - N]} = Z rlpe—N| =
p e
h—N k
ylk—N] = alp) = > afi— N
H=—00 fl——

i) LL), because difference equations describe LTT systems.

i) L, not T1, see d)

i) TL not L., because  S{z[k] + 2a[k]}
S{z [k} + Sxalk]} = @™ 4 ge2l]

aa‘.l[k]+3:2{k] £
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Solution 14.2

a)

b)

c)

shift-variant. because
S{xfk — NI} =22k - N)] # ylk — N} = x{2k - N]
likewise shift-variant, see a}.

The system sets to zero every sample with odd k.

[k}, keven
ylkt =
0, kodd

zlk = N, k even

Sk — N} = {

0, Eodd
Sk — N = xlk — NJ, E— N even
vRm = 0, E— N odd

Example for & = 1: shift-vanant

Slafk— 1) = { b =1]. keven

0. & odd
_ 0, k even
Mk -1} = [ .
xk— 1], b odd

Example for ¥ = 2: shift-tnvariant

xlk — 21, I even
S{alk =21} = { | ’

0, A odd
- ek =2]. keven
ylk =2 = G, k oadd

The systeni is invarant when shifted by an even nniber of cyeles, but shift-
ing 2[#] by an odd number of cycles does not. deliver a shifted version of y[&].
Note: Systems that are invariant for a certain shift and its multiples are
called perwodic shafl-wnuvariant.

Solution 14.3

a)

y[-1]=0

y0) = a0) =1

Jit} = of1] — 29ff =] = 0-2-1= 3

Y2 =22 - 2yl — 1 —ylk -2 =0-2-(-2)-1=3
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YAl

g3l =0-2.3+(-2)=—4
Y4 =0-2.(-4)+3=5

ylk] = ( ¥k + Deld]
) ylk] =1.-1,2,-2,3, -3.

Solution 14.4

oIK) = 214 ~ ik =2
yi2] = x2] - yl0] =1
v3] =43~ 1] = -6
o] = alt] - g2 =0
ylo] = «[b] - 9[3] = 5
Solution 14.5

o Internal parl:  leave out input signal

Y0 =05-2=1

Yin[1] = 0.5 4, [0] = 0.5
yinei2] = 0.5 gL = 0.25
Huw 3] = 0.125

e Lixternal pari:  sct initial siate to zero

yxrf0] =2 1=2

Yo [1] = 2 1+0~5‘(1.+ym.[f)J}=35
Your[2) =214+ 0.5 (L +3.5) = 4.25
Yet[3] = 2 14 0.5 - (1 +4.25) = 1.625

o luitial condition

y[ﬂl = Hint ’“] + ,Uexf[U] =1+2=3

Solution 14.6

&) A uninque assignment of initial states is only possible with canonical forms.

e DF I.  Begin with the feedback branch.
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bn hlﬂo
xlk] -l 4 > )+ 05 = (4]
¥ ¥
-1 1
“ bl -ﬂ| £
g 7 A

The initial condition is fulfilled by 0.5z [0] + 0.523[01 + 4 0.52[0] = 3, and
Note: The internal part alone is suflicient to determine the initial states.

o DF II.  ay shown in Fig. 14.7 and Fig. 14.9.

Initial condition:  gint[0] = (bl + b - _a—al) (0] =3z[0) = =z[0]= %

o DF ITI:  see also Fig. 2.5

x[k] . 4 | 0.5 =k
Ak]

Y [0] = 0.52[0)] = 2{0] =2

b) M- k41 = 2k + k]
(Im) yik] = 2axk] + 0.5z[k]
(I} m (II) : ylk] = 2e[k] +0.5{xk - 1]+ ylk - 1])

Diflerence equation:  yik] - 0,5yk — 1) = 2z[k] + 0.5xfk — 1)
Multipiying the difference equation by 2 yields the coefficients from a).
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Soluation 14.7

DFII DF I
k] —=(E)+ 1-_1———ﬂﬂ X&) 1 - k]
1 olk]
71 -1
(4] alel}
-1
S T=m — |
The initial states realise i [0] = y10] = g [0] = —1 and yine[1] =

= yl] = #exe[l] = 6. Only then will the auxiliary conditions be fulfilled, see
Fxercise 14.4.

DF IL: 20 =1, =zl0)=-6
NE III: 2 =-1: [0/ =6

Solation 14.8
zlklo e - z

o

_r =
-1
1 1
. Yiz 1 4= i
Partial [ractions: Yiz) = T~ 1"'“ = l""‘ =
A Bl V& e R s

i (%)’* N 2 i [(0‘56—12—?)# - ((Lﬁeﬁ%)*}

PR '
= (é) [ 3_b111(-)—k) + l] e[k]
2 V3

Selution 14.9

a) TIR system, because H)(z) has poles outside the origin, which means that
the output signal is fed back into the system.

Hi(=) _ @ _ A N A
z (z~glz=2)) -2z =2- 2
with o~ = 1+7 4 = M
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Mkl = TAzh+ A% 22¥] efk] = (4] - {2, [ - [eveidter 3
I3
+ereld e TR k] = a2 (%) £os [EUE‘ - 1)} elk]
b} Calenlate the first five values of hy[k] and use them for hy[k]:
a a

a
) — — —— —
= Mot =a0.5,0,-7,-2.0,...

Ho(z) = a- (142714005272 0252 4 —0.25:%)
P+t 0325 - 0,255 - 0.25
=
35
Akl —» a . > -1 -1 . ‘ o o _l

-0.25 -0.25

l,
0.5
OO

Soluticn 14.10

. 2405271 22405
£l Hiz)= - = \ o N
W HGe) = e = e 14708
X(z) = — 2] > 1
Youlz)  _ 2:405 5 3
z T o {z=D(z-05  z-1 -0.5
&
Yexs|K] = belk] —3-0.5%<[k]
b) Yi(s) = A———, |5 >05
z—05
*
)

yinl'.['[\"J = A- O-Skﬁ[k]
Y 0) = 9l0] = g0 =3 -2=1 = A=t

Solution 14.11

External part:
1 22 2
Hiz)= N = T = - ~ .
2) T+z72  #2+1 (2+4)z—J)
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X(z)= —— . Ja>1

z+1
Yealz) = _ 05 | 025(1—j) 0250 +7)
z (z+Diz+i)z-7) =2+1 z+y 53
5
goxtl] = [0.5 (=K +0.25 (=)* +5%) — 70.25 (=) — j*)] e[k]

= Uﬁc‘[k] [(—1) + cos (%L) — sin (gk)]

Internal part:

V() = A—— 4 A2 |z > 1
t.( ) P + Tt |z
&

yimgk] = [A.}* + A*(_'})k] E[}‘]

Irom Exercise 14.4: 3, [0] = =1,  gin[1] = 6

k=0 A+ A4"'=-1 = Re{d}=-05
k=1 g4d-34"=6 = ImiAd}=-

Y] = [ QO3 (2 ?.) + 6 sin (jk]] e[k]

complete solution
ylk] = 0.5¢[k] [(—1)’* — cos (%k) + 11sin Gk)]

Solition 14.12

)

a) cfk] = Z allblk — K] z blk — 5]

H=—00 w=0

= &[k] + 26k —J]—ak— ]+ 8k — 1] + 28k — 2] — 8k — 3]
+ilk — 2] + 28[k — 3] — &k — 4]
= §[k] + 36[k ~ 1] + 28]k — 2] 4 8[k — 3] — 8[k - 4]
b) clk] = alk+2]+08a[k+1] = 0.8 e[k + 2] + 0.8 0.85TLe[k + 1)
= 0825k +2] + 0.8 [k + 1] + 0.8 0.8 e[k 4 1)
= 0825k +2) +2-0.85+2¢[k + 1]
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okl
16
1,28
]j 1
e B

Sohition 14.13
("\ y M) e g\) 21 Mk]

f_‘) | Sl T T
e - v R
B SRR k IR I AN

e
»

—

—l—l——r—.—

Solution 14.14

(o) ik (v J hik]

Solution 15.1
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a) not causal
by causal
c) causal
d} causal

e) not causal, "reacts” to fature x[k], when £ > 0 e.g.. y[1] = =[3]

Solution 15.2

. 1 _ N .
a) Hie*vt} = gitvof & P 2mdw — wp) - (—gsign{w)) = —2m38(w — wy)
'H{e‘?“’ut} — f_l{—jQ'JT(?(uJ —WU)} — —j}e“"“’ — ej-[wt—g)
1 . . |
by H{sinwyt) = _2;5 LFJwUt _ (,_—ont.] N —
o]
.

27[8{w — wi) — 8w - wol] - (—ysign(w)) = -7[d{w — wn) + 8w + wo)]

-

2

Histwyt} = -- coswyt = sin (w;,r - E)

| . . |
¢) H{coswot} = = [¢7' + e It e —
' a 2 Fig2

|
*

5 2m[8{w — wp) + Sler + wy)| - (—gsigniw)) = — jrld(w — wo) = 6{w + wp))

. T
Hicoswol} = sinwyt = cos (w‘nt — 3)

d) Hfcos2wyt}o—s — gm[d(w — 2uwy) - 5w + 2uwy)]
H{cos Aopt} = sin Zeot = cos (‘zwﬂa, - %)

Im all cases, the Hilbert transform causes a phase shift m the time-domain by

=3

Solution 15.3
. ) 1
2) h(t) = — o0 —s H(j) = —pan(w)

1H(_Jw)1={1 ol # 0 ag(HO =4 ¢

0 otherwise e

w =0
w=0

w0
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=

I
g

|H(jw)| arg{ HGw)}
'

il ;

The magmtude of X {(jw) stays unchanged until w = 0:
0 w=10

X { =

X ()] { | X (jw)| otherwise

for the argument:

arg{X (1)} — 3

w>0
2

arg{ Xp(yw)} = 0 o = 0
arg{ X (gw)} + 5 w< 0

y(t) ist real, since both z(t) and h(t) are real. Using the symmetry scheme
9.61 and Y (yw) = —ysign(w) X (yw), we obtain:

H

-
Lg.real O ® )(g‘rcal ? }wlmag ® O Yy real

und

H

Tyreal® @ X'u,.lmag > Yy real =0 Yg real

The even part of z(¢) becomes odd by the Hilbert transform and vice versa.

Since 18 y(t) real, Y (yw) has conjugate symmetry, according to (9.94):

T 17 1 [ .
/ r(tyy(t) dt = — / XY (~gw)dw = = | X(w)¥* ()
2/1 Z7r — e
) "
— o [ HUwisian)x" 0 do
,/T .
e | X (Qw)|?sign(w) dw = 0,
27

X(jw) = X*(—jw), and therefore | X (jw)|? is an even function. The Hilbert
transform of a real signal creates an orthogonal signal.

With the result from Exercise 15.2 and sign(0) = 0, we obtain:
o0

H{wrp(t)} = Z [a, sin(wort) - by, cos(wort)]

v=1
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Solution 15.4

1 1 1 1
Y x(f = --— — --cosuwyt —
) (£} el ﬂ_com\,g :
o
.

X{jw}

1 . 11 .
= [—amsign(w)] — puil v [ = wy) + 8w 4 wy)] * [—ywsigniw)]
—ysign(w) + ‘é [signfw — wy) + signfw + wy)]

Xijar)
1

~y Wy @
-

X(yen)

| J
A
-0y lwg w \\. Xym)

- N
. . —[f)g (I'Jg
=f Sigm ev) / | N | o
1)
)
-
b) X(jw) = --rect (—ui—)
2ty
. ¢
&
(! = —Dwt
#0) 2 i(yt)

¢ X, 0w)=0  forw < 0, causal
d) Xu(pw) = X (qw) + 3 X (w) = X {7} (1 + j{—ssign(w)])
2X(jw) for  w>0
= X{3w)(1 + sign(w)) = X(p) for w=0n
] for w<0
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Solution 15.5
FEy = H{zH)})

o]
|
»

X'(Jw) = —psignf{w) - X(qw) = 1A(}w)] =|X{z3)] YwHEO

According to Parseval, signals with the same magnitude spectrum have the same
energy. The exception al w = ) does not make any difference after integration.

Solution 15.6

a) Hs gilt:
Xe(pw) = [+ 2(-psign())] i (0w)
L]
!
Q
) 1 .
ma(f) = )+l - =) + jH{x1 ()}

b} The Fourter transtorm of a veal function s even. Knowing that, and nsing
Parseval's equalion, the energy of z1(t} and x2(f) be caleulated as follows:

T - 1 0\.-' N 2 [p- 4]
E = / [z ()] dt = 5 f X {w)|? dw = Ef|X1(w}|2dw
— i — % 0]
By = f e ()P dt = — / [ Xal(w)]” dew

27

= o [ simn NP de = o= [ A1)
w2 [}

s 7 ;
= /1.¥1(‘}w)|zdw = 2F,
4

27
¢) By = /1:1:2(t)|2dt: f 1ar1(r.)+jH{;r1(t]}|2dt

[e)

f s+ H{z (0 dt

—
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Gt

= f |;1'-'1(t)|2d£+/.|H{;171(t'}}|2(it:‘2!“}1

el

oy B

Solution 15.7
a) For a causal system :
1 o1
)= —=Plyu)+ — = —H{P{jw
QUw) = =—Plwi+ ~ {P{u)t

T'his yields:

1
H(pw) = P{w) =3 POw)+ ~
;
MY = pit) - jop() F O {i = p{t) + p()F"

p(t) + plt)sign(t) = 2p(t)s(t)

PPN

")

Wy

1 ! w {
In particular, P{yw}) = — T —uHg Wyt
p u {gw) = o, CrOC (wg)*rett (wg) . o%_ql ( 5 ) n{t)

yvields:  h{t) = 2512 (%‘ﬁ) z(1}
} QUw) = -H{P(3w)} = _!L [ L) dn
T w-p

P = [t S i)~ + [1- 2] ) ety

Wy

AL 21 (=00 + wg) — o)}
Q) = —= / — dn
T . w =7
LT = 2] e — - wp)
- __f elry
T W=
1 g+ w
Qlyw) = ——— {(.‘; + w) In|% ‘ F{w—w,)In
lwg o
c) H{yw) = P(w)+1Q(w)
s
s}

M) = plt) + pq(t)

W g

|
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Since Plyw) 1s real and even, the symmetry properties (9.61) show that:
p(t} is real and even

g(t} is unaginary and odd

Q(jw) is real and odd

Solution 15.8

a) sap(t} = s{t) cos{wot) o— e Spy(jw) = _21,_¢S(Jw) x T[8{w — wo) + dw + wo))

45, lpan)
” _./\
ity ! (j)()—(ﬂg 1ty ('.f)o-i-mg W

b} S(pw) 2-w, =27-8 kHz

bandwidth Sas(7e0)

. N i -"L:.,‘ [ T w—
Sar(pw) 2-2 wy =27 16 kHz handwidth S{w)

B

. 1
¢ sgumll) s{t) cos{uyt) -+ [s(t) * E] sinf{wot)
:

h

Seac(pe) = 5= {S(w) bl — wo) + 6w+ o)) +

+[SGw) + (=fsigniw)] + Z6w - wo) — 8w +wo)] |

= 5 (S0l —wo)) + S(alw +wo)) + S + ) - E0(w + wo) -
—8(3{w — wo ) )signfw — wo)}

IJ[SEMUM)

. . 1
o It e :
- o

- o

g

T \-\‘;{"U g1y iy o

d) S{pw) 2-w, =27 -8 kHz

bandwidth Spar{w)
Spalgw): 2wy =2 BkHz = o 50w
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Solution 16.1

7 T | T 1 s
a) ] |R(tH dt = fp 0.1 sin(Brt)| dt < /e‘“'”’ ldt = i [em®X T =
— o 0 i+

=10 = stable

b} with Table 4.1 and the modulation theorem of the Laplace transtorm, we
oldain

H(s) = 5 b

(s +0.1)% + (5m)? T (s- sp)(s — s%)
Poles lie in the left half-planc = stable

: sy = —0,1% jom

Solution 16.2

(=
Bounded mput: Z lck]] < My, My < oo
h=— o
Sufficient for bounded output:

)

Z x[x]hik — K]

-G

b o

< > uls]) - IA[k - Kl <

(L= )

lylk] =

s o)
<My Y Bk k)< MMy My <o

Necessary condition: choose input signal: (k] = %?ﬁ
=k
= yl0] = E w[klhl—rl = 2 RIS

Region ol convergence: 0 < |z] <0 ac
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Hy(z) 14 stable for all a.

_. 1 a
b} He(z)H (:) =1 Hy(z) = = — -
W Ha(z)H\(z) = Hylz) Hi(z) H—db

Possible regions of convergence:

1. |z] < el = Ha(z) 15 not causal aud stable for la| > 1, becanse the
poles of a left-sided sequence have Lo lie oulside of the unit circle.

2. {z| > la| = Ha(z) is causal and stable for ja} < 1.

Solution 16.4

a) H{z)=

by o)

Zeros: 2y =0

Poles: 7145 = 12 3V3) sl = % < 1 = stable.
5) 1. Hls = 1} is finite
R 1 842435+ 1
2. 27— ;;—: + 1 = -1—5—(9—_352—4, Nuinerator is a Hurwitz poly-
nonual = stable.
¢} All zeros inside the unit sample are = mininuin phase.

d) Yes, evident {rom the difference equalion.

Solution 16.5

The internal pari. with order z can be gplit into partial [ractions:
N

N
A,z kL
T lz) = Z »—0 dintl¥] = ZA,_z.f‘s[k]
: =1

r— 2z

a

=1

The scrtes ::f’ decays where & — oo, if |z;] < 1, i.e., if the pole lies within (he amt
cirele,
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Solution 16.6

a) Denominator polynomnal N(s) = —2.5[s? + 1.35% + 85% + 75 + 2]
all coeflicients are positive and exist = possibly stable.
Hurwitz test:
Ay=a,=45>0
Ao =apae —a3 =15 8-72>10
A
Ny

li

Q@ “ i -
@y agay — aiey — a3 = 162.5 > 0

"

aytoasag — 03ad — ajay = 325 > 0
= N{s) is & Hurwitz polynomual. so J(s) 15 stable.
H{s) does not have minimum phase, because zeros lie in the right half-plane.

b

—

Not. all coeficients in V{s) = s* — 4.55° + 852 - 7s + 2 are positive = so it
cannot be a Hurwite polvnomial, aud /4 (2) is not stable.

H{s) does not have minimum phase, hecause zervs lie in the right hialf-plane.

¢

Not all coefficients in N{(s) = s* + s + 2 are positive since there is no term
with 52 = not a Hurwitz polynonial, so H(s) is not stable.

H{s) has minimum phase, because 1o zeros lie in the right half-plane.

Solution 16.7

Since the transform is the same in both directions:
o Ingide the unit cucle of the z-plane — left half of Lthe s-plane
o left half of the zplane -- mside the unit circle of the der s-plane
o Intersection = left half of the unit circle on the z-plane —
Intersection = left half of ilie unit circle on the s-plane.
Solution 16.8

a) Hy(s) =2Vu(s2 + 1)

His) = E(s) _ By 5 B 3 B
YTUFEGGE) 1+ Hys)  LroVp(st 1) 2Vps? 2V, 11

b) H{(s) is unstable, becanse the denominator of FI{s) is not a Hurwitz polyno-
mial,

Poles: 815 = 49,/1 + o1

2%



=
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¢} No, denoimnator polynomial is not a Hurwilz polynomual for all ¥, = 0.
- S — e, —_— P - _1_ I — +
d}) When s = ju jw = j:J\r 1- 5y W= +6

&) U{jw) = 20w — 6) — 8w + 6)]

Ryw) = Ho(po)Ulhw) = —U )
:
{t) = —smn{G) = —ult)

Solution 16.9
a) H{s) has poles at s = £3 = unstable

H(s‘} 1

b) Hris) = H(s)Ks s +1-Ks

¢} §* — Ks+1 must be a Hurwitz polynomial = K < 0

d) [L(SJ = ms D= .\’{; 1 - f;_
.
|
a
h?(“ = al- !? -.,]n(gt) (f)
]u |y (2} dt = 1 / ]e%" sin(at)) dt < 1 7.«9‘2&‘ dt < o
Skl | lof J

—i

ho (1) i integrable <= stable

Solution 16.10

&)
Unstable, because of poles m the nght half-plane
b) Gls} = K; H(s) = _FE)_“— = '——Q——'—r‘

14 R -Fls) 2+ (K—-2)s+
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points for root locus: K =0 sp=1£y2
KN=2 sp = £3v5
K=4: §p = —1 % j2
double pole K = 2+ 2/5: s, = -5
K —oc: Spi = =05 £pa — O—
b Im{ s}
_K=2

4"

S ko

Re{s}

Stablisation succeeds if 2 <« A < o6,

Solution 16.11

&) H(s) = — 18 !

I+ K- F(s) s$-2s+h+k

poluts for oot locus: A — —nc . sy — —ox; Sy — 00

A=-5: b‘p]ZU,S-pg=2
K=—4d: Syl = &2 =1
K=10. sp=1% 32
K=5: sp =1+ %33
KH=—00: s,=1=%300
4 Tm{s)
& K-
2 K=0}
K=-5 =5
RN I
K—=-% 1 K—Z':OC
-2 K=0
¥ K==
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Cannot be stabilised becausc both poles do not lie in the left half-plane for
any k.
1
2+ (K —-2)5+5
Iurwitz: nocessary + suflicient that all coefficients are positive
= stabilisation for & > 2 {compare Exercise 16.10)

by II(s) =

Solution 17.1

a) The linear cnsemble mean E{x(#)} is equal to the linear time-average (¢}
of cach sample function,
Ensembles 1 and 2: Yes
Ensemble 3: No, becausc the time-averages are different. (2;(¢) # x,;(¢). ¢ #
J)
Ensemble 4. Yes

Ensemble 5: No, because the ensemble mean is time-dependent, E{x(t}} #
constant,

b) The cnsemble mean squared E{a2{#)} 18 cqual to the time-average squared

2:*(t) for each sample function.

Ensemble 1: Yes

Ensemble 2: No, because the eusemble mean squared E{z2(¢)} 1 time-
dependent. L

Ensemble 3: No, because the time-averages squared z;%(¢) of each sample
function are different.

Ensciuble 4: Ne, in this case the time-averages squared x;2(t) are also dif-
ferent. The sample functions have the same mean, but different amplitudes
and therefore different mean powers ;%{(}.

Ensemble 5: no, because the ensemble mean squared Ef{z?(#)} is tune-
dependent,

Solution 17.2
a) According to {17.14) und {17.15), for weak stationary random processes:

— pz(t) = constan: excepl al 3,
— o,2(t) = constant: except at 2,

— ihe ACF ¢4, (¢, t—7) doss not depend on t: except at 1.
Only ensembles 3 and 4 can belong to weak stationary processes.

b)Y For weak ergodic processes:



Appendix A. Solutions to the Exercises 347

- BE{x(t)} = Txf_), because of (17.21). Applies to cnsembles 1, 2 and 4,
see Exercise 17.1a.

~ E{x(t)) x(lz)} = z:{t1} - w:(L2), because of (17.20). In Exercise 17.1b
the special casc t; = fq i investigated. The condition only applies
to ensemble 1. Because this random process is not weak stationary,
howevcer, it cannot be weak ergodic.

= none of the random processes are weak ergodic.

Solution 17.3

a) Linear tinue-average ;(t) = 0, because there is no d¢ component.

&

The expected value at a certain point #5, F{z(ts)}, is spread across many
points of the CD signal (at most by as many sanples as there are on the CD),
because 1 owr experiment., cach sample function comes from a random time,
Since music signals m general do not have dc components, E{x(#)} = 0.

With first order expected values we can only discuss the condition for sta-
tionarity given in (17.14}: In a) we acertained that g, = E{x(£)} = constant.
With the same notation we can assume E{x?(t)} = constant, because it is
determined [vomn many values of the output signal 22().

= the random process could be stationary.

Tor ergodicity, the first and second order ensemble means must agree with the
corresponding time-averages of any sample function, e.g., B{z*(1)} = x,2(t).
This does not apply because Lo formn the time-average squared z;2(1) only a
ten second section of the CD is considered, which for different sample func-
tions 7, is taken from different points on the CD The averages are generally
different, lollowing te the loudness of the music.

= the random process is not ergedic,

Solution 17.4

My = ) + e, = 2

E{y? ()} = E{{m: () + 22(0)?) = ELzH) + 2 Bl (D)) +E(23(0)) =7
2 B2 2 ———

g, =B} —py =3 7

Solution 17.5

7z = B{(0(t) = 1,1} = E{[e(8) + y(t) = (o(t) + ()%}
Since y(#) is deterministic, 4,(t) = y(t), and therefore:

0;2: = E{(z(t) - ﬂ'rz:(t))z} = 0? =10

Adding a deterministic signal does not change the variance.
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Solution 17.6

a) p(t) =1+ K
03[” = B{{y(t) - f";f,r)g} =E{{x()+ K -(1+ 1'1—})2} = E{(x() - }'"‘:a.':]?} =
=o0f =1
E{* () = op +p2 = K? + 2K +5
p(ty=1+K
Ergodic.

b} e, () = 1 -+ sin{f) # constani. = not stationary
o2{t) = B{(x(t) +sin(t) — 1 —sin(1))?} = 02 = 1
E{y* ()} =5 F 2sm(t) +sin’(¢)
ylt) =1
Not ergodic because it 1s nol stationary.

c) py{t) = 1+ &t} # constant = not statwonary
o2(t) = o, see b)

E{pP{)} =4+ (1 +e(0)? =5+ 3(1)

yi(t) =1.5
Not ergodic.
d} 1o, (f) = 52{t) % constant = not stationary

5

ol(t) = 252(t) o2 = 100:(1)
E{y* ()} = 125(1)

) =25

Not ergodic.

If

Solution 17.7

ru'.!.'(t) = C{t)

E{o?(t)} = 2% (t) = e ¥e(t)

F2(t) = E{x*(t)} — pi(t) = 27 (t) —2°(t) =0
T [ ]

—= 5 1 ot gy oy | L L

s =d g fe e  r Ta

[

(em®T — 1)} =0
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Solution 17.8

a) Ergodic, Lecause the properties of o die do not change with time.

fip = 3.5 {see Example 17.1)
1+4+94+16+25+36 Yl R
5 = —a = 15.i7

35

o2 = E{2°[k]} — 2 = o 2.92

F{x?k]} =

b} Likewise ergodic. becanse the propetties of a die do not change with time.
fige = 15,17
i
. 1
T — 4
R = ¢ g& = 379.17
ol =149.14

Solution 17.9

To caleulate the time-averages, we use the results from bBx. 17.3a), where z(t} 15
the number on a "normal” die, g, = £ und E{a®(1}} = %
—  6+%4, 13

- 1 . : 199
k] = 512 E{*[k]} +6%) = 5

The ensemble means of ylk| for & # 3N. N € Z, agree with those of x{£] from
Exercise 17.8a). For & = 3N, N € Z.

pylhl =6

E{y*[k]} = 36

o[k = B{y?k]} — " = 0

Netther stationary nor ergodic, Decause the ensermble means ave not constant.
Solution 17.10

Yrp( ) = Elaft + oha*(t)} = E{K - K"} = |K?

Solution 17.11

As every sample function has & penod of 10s, the ACT o, (fy. 8y L ) 1 also
pentod iz with a period of 10s. A good approximation is given by o, {fy. ty +
7). independent of time {,. The justification s simlar to Excrcise 17.3: The
correlation properties of a sigal mixture from the whole CD are virtually nmchanged
within 10s:

Gaxlfoto +10s) = @ {to. te) = E{x*({n)}} = constant.
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Solution 17.12
a) B{(z) +y(0)*} = B{2(t) + 20(y(t) +*(1)} =
= BE{z*()} + 2B{=(t)y()} + E{y*()} = B{=*()} + E{y*(1)}
To satisfy the condition, E{x(t)y(t)} = 0.

b} The special case of z = (¢ in {17.48), @, = E{z{ + Oy(t)} (17.46) aud
pr = E{x()} yield:
E{x{t)y(t)} = E{=(®)} - E{y(t)}

¢) Either E{z(t}} or K{y(t}}, or both expected expected values must be zero
(at least onc of ihe random sighal must have zero mean).

Solution 17.13

With deterministic signal, the quantities in question must be calculated with time-
averages, because the enseinble means correspond to the signal ilself.

T
Power: Tlglr;o 21? ./_sz(t) dt = d2(1)

1 T —
le ¢ : lim — ity elt = d
de compenent ]!1_120 5T /,Td(t)dt d(t)

Effective value: \/ d%(t)

Power of the ac component: (d(i) — d(#))?

Solution 17.14

Forming the Lime-average according to (17.18) 15 linear. With g = d_(t-)' therefore:
(d(t) — )% = d2(t) — 2ud(0) + 2 = d2(8) — 2ud(t) + ¥ = A1) — p?

gee dervation of (17.8)

Solution 17.15

Py (7) = E{e(t) — p) (0t — ©) — )} = ,
=E{a(t)y(t — o} — pa Blylt — )} — sy Bl{2{t)} + patty = 00y (0) — piatty

Scolution 17.16

For 7 — o¢ any chosen random processes are generally nncorrelated:
( ) y 477 +10
Pyl T = 00) = fhppty, = py = M ———5 =
o Y Y e 1477

(pyr.(r} = Py [:_T) = @J:y(z)a da L;”y:c(f) is even.

Taking the solution of Ex. 17.153 we obtain:

47% 410 6 ,
— 4 = -—; = 1;1:[..“((].

Py (7)) = Pyalz) — phapty = T+T 14
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Solution 17.17

a) g, = :;‘3'1.'&’(?'- — o) =0
ty = 0, because the delay does not change the de component.,
oo (7) = E{u(t)o(t — 0)} = E{2(t — 10)v(t — )} = puol(c— 10) = e~ 1710
‘Pm:-{f) = ‘pa‘w(_r) = e_l_ T = e—|f+il'li
Yuul T) = wue{ 7}, because a delay does not change the correlation properties
of a stationary randoin process.

b} () =€ 12l =e(r)e” r-l—&' Z)P
E 1
1 2
w(?u’}_ w+l Jw—l T2+
{with (9.12) and Table 4.1)

i . . . 2
Y e = 10w o) — e F 10w
Do (gw) = e P, (guw) =77 )
(I) v L 1= e.ﬂ“‘-“‘;.
velaw) w?+1

e) D (gw): real + even, since i, (7} real + even
D, [gw) and @, (3w): conjugate symmetyy,
©(t) real, since ACF real + even.

Solution 17.18
usls] = Bllilelk - )
@ [0] = E{z%[k]} = 5 e Ex. 17.8,

‘3111{‘9: the numbers of dice are uncorrelated with different time &, pp.[x # 0] =

ot =2
-‘19
Pexli) = — + —5[&]
35 .
W [""] = ‘:O:N‘['*’;] - f-Lﬂs = ]_‘)5[#lJ
o 49 35 19 35
3, (e = F, —5 kly = 12
(") {4 []} J‘LL(O,T)JFJQ

Solution. 17.19

0+1+1+1 3
fla = ————-—_:q

4
5 . . P41t 412412 9 3
g =Rk —pt e — - T o 2
(@]} — g ) ===

werlt # 0] = g2, becanse the outcorme of a dic does not correlate to different

i
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times,
{ 8 3
‘rxa:_-“»] = E + E [Kl
r 3 r .1
i.f"r:r:["\'] = 1_6(5[*\1J

i 9 Q 3
(e = [ ) 4 =
wa(67) 16 (27?.) * 16

Solution 17.20

E

5
,“'y::é

S ;5
oy” = E{w Ik} —u,* = ¢

25 5
Suulsl = 2 + 390

15
GrylR) = 9y l] = pop, = T because the two processes are uncorrelated,

Solution 17.21

X

Power: F&%»—}- D)o = -

ACF Parlgw) = %" ot (5) et (3)
L
o]

. _ 1o
lr-":'-r:(rJ = ?rSI ()
Solution 18.1

) enle) = Bfall+ oy = Blalt + o{C" ~ (1))} =
= Mgy +Ele(t+ a0} = iy + ¢ (7)
a2} = Byt + D) = B{C + 2t + o)) (C* + 27N} =
= JCP + Oy + Ol + a0 =
= |C)? + 2Re{C* .} + @pa(T)
b} We consider z(f) and 7 as signals of the same kind.
Depl T} = el )+ 0ue(2) = 0l 0) + B{alt + 0)C"} = @, {7} + p, O
LP.r,ry(f) = )+ {P,i.‘(f(f)‘ + ‘P(":rr(r,} + ooz} =
= pal o)+ e O+ Ol + 1O =
= uo(2) + 2Re{p, "} + |Cr|2
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Solution 18.2
a) With (18.8): ¢,..(7) = [A|%gr(7)
b) With (18.12): (7} = ¢mi2) + 2Re{g,B*} + B =
= |APp,u(2) + 2Re{Ap, B} + |BJ?
¢} With (18.7): @,.(7) = A%, (7)

Solution 18.3
al  wgy(r) =Elz{t+ oy} =
=E{x(t + z)(A*x* (¢} + B*)} =
= A F{a(t + iz ()} + B*E{x(t L )} =
= ;1 "v'"!'.r:( }+ ’13*!;_".

b} No, because we are not considenng an LTT systen:. Adding a constant makes
the system non-linear (see Ch. 1).

Solution 18.4
A wwwl(?) =EBE{wlt+ cjuwtt)} =
= B{A(B 4 uit = YA (B +u{1))) =
= [A]* |B? + B" E{u(t + 7)) +BL{u" (1)} +E{u(t - chu*(t}}] =
. x5
= AP + guu(zl]
b} eelt) = Efolt + oot () =
= Ef{elt + o) AYD + 0¥ (1))} =
= A*B*E{v(t + 7)} ~A*Ele(t + o)u* ()} =
[

=0
= -‘4 *{r""vrr- f f)

¢) With (17.54): gl o) = @t (— ) = A2, (— 2}
d) () = E{ult = o (0)} =
= B{u(t + 0)A(B* +ux (1))} =
= A"B*E{u(t+ o)} +A*F{u{t + oju"(t)} =
N et

=0
= A*‘puu( 7

e) With (17.54): wuul7) = ¢ o -7 = ‘439-;ka-u(_ T) = Apyu(7)
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Solution 18.5

Using (18.21) and (18.7), for uncorrelated signals = and y holds
Paz(7) = A% 022 (7)

Py=(7) = B pyy(7)

With (18.8) and (18.17), we obtain:

2:(7) = |AP00u(7) + | B0y, (2)

Solution 18.6

—w? — 2w +2
H(jw) = ” _
) = G r 2w 1 D)
\H(w)? = (2 — w?)? + 4w? _

A4+ w)((2—w?)? +4w?) 4+ w?

1.
|H(jw)|* @ —o pn(z) = Je 2| 7|

({7;1],(1')

b) ©0yy(2) = wrn(T) * @as(T)
H‘Qam(f) =6(t) — ‘Pyy(r) = wnu(7)

Py = ‘Pyy<o> == LPM:,(O) =

N

Solution 18.7
a) Qu(Jw) = Fpaa(2)} = F{o(2)} =1

b) pz = 0 (x has zero mean)
iy = H(O) » iy =0

¢) Simple calculation of wpi(7) in the frequency-domain

onn(z) = h(z) * h'(—7)
[e) o] Q
o . .

H(w) - H*(gw) = [H(Qw)|?

$ hh (Jw)
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C

wepnl{z) = F~ {rr rect( 7 } = wsi(z)
d) Byy(w) = |HOw) Punlpw) = wPrect(3)
[ ]

|
o]

(7)) =msi(c)

e) {2} = ;\.t..,(r‘ * W {—1)
Pry(T) = Purl Q) ¥ R (-0) = () w BT (=) = b 1) = &i"(— ) = wi(7)

f) Power = mean squarcd= E{[z{t}|*} = i,..(0)
@ (0} — oo (white noise has Infinite power)

rn(0) = a2 + 422

2

= Varianz a5 = @, (0) — x

wyy(0) = m, ¢ =7 (band-limited white noise has fimte power)

Solution 18.8

a) Inverse Fourier transform with the shift theorem:

L w T o ne
H(jw) = L2.mCt(‘_2:u:)(€Jﬁ 4 e T2y )
L ]
o
) _
hlt) = 2’-" {ql (w‘g(t -+ i;;}) + si (wq(é - %;})]

b} Likewise, calculation of pp(7) can be achieved with the shift theorem:

By = <:os2(—ﬂ-— -w)re(tt(:—) =
ng 2
T 1 s, - L 2
? 1 [eh? A R “‘] Ie{t(zwq) B
1 ,=. 1 I _, .
[1 AT R 3 ~+ ir "“LHW] rect{‘—%)
P
1w 1w . . 1w .
wnn(z) = ZTQ si{wyz — ) + {.‘fﬂi siw, ) + z‘ﬂ_—q s1{wyt + )
_ : .. "
c) ‘P;u;:c(r) =F l{‘I)-.c:r.(JW)} =Ny ")(3") + Z‘;
l‘*’.‘r.‘z = l]-m r‘pJ’aI(Z} = 5=

T oo 2
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) oo m
d) py =t H{H) = Vor I= \/;

Dy, liw) = B(w) [HOw)) = Nocos? {Q—}mct Z;)Hu, |H () 8()
- e e
(,) =1
Ny osifw,t om

‘P;a,r'x;{?'._} = waurl 7) ¥ @ralz) = 2w t[ (—3—) ] 2w

L.\..g_f\o ﬁ

p, = ‘Puu(”) = I
Solution 18.9
ACF: 5

. 14w 1
|H(gw)|? = ; =

(2—w?)? +w*  w? 44

Ny
qrm ?U-" |H()(~)E @“ ]'L.L.‘)—— 0 217

-0 ‘PW(W 4 — €

iva "
Mean: py = gy (r—0oc) =10

. N,
Variance: o2 = g, (0) — 2 = TO
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Solution 18.10
. S i o 2o ,
a) (,ny(f) == ;N[]g{:' Ul !(a T [))O—OJ\r{h §m -—z(byy(j.b')

@, (3w) = [H{jw) |2 we (Jw) — |H(J'~“‘J|2

n
— II{s) =
w2+ a2 (%) o+ 8

b} No, any number of all-pass stages will still not. change |H{(w)]?.

Seolution 18.11
a) Wilh (18.38) and (18.39):
P () = Pryng (7) % 9a(T) = T (T) % h(= 7} % e (2)
Dy (T) = ©rgh, (T) # 9. (1) = ha(2) # W3 (=) # @, (2)
b) With (18.52):
D) = @rp(Th# Ry (T)
Py (T) = pax(0) % ha(7)
c) pult r =y and y = 1 in {18.65):
Py (T} = g (OV (7)) = ) (=T x i {(2) = @l (— ) % RS (= 2) xRy ()
= e {2y % AE(—2) x by (1)
We used (17.54) and (17.58) Lo rearrange the equations.
Solution 18.12
Proceed as in Sec. 18.2.4:

orgli] = Blalk+ 6] 3 a etk - = SR B elk + sk — ) =
e o
S Wil s
Ifl
Substitution v = —j

Peyls] = Z R [—¥]ippn s — V] = 2unlk] ® B[ -4]

Solution 18.13
E’mceed as 11 Sec. 18.2.3:

wuls] = {Z-“? [W]x[k + & — WZ;’I*[M 2k~ u]} =
ZZ*’*W’ v] Bz [Hh—;.:,] =)} =
Zzh[#]h”?f Pl — jE V]

i* t
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Substituting ¥ = g — v and swappiug the sums yiclds

Fuglk) = DN hllh s = 0) - el — 0] =

FER ]

Zh[ﬁ}*h pun |k — 0] =
Z \f'hh LP:x o= U] ‘Pfr-h[ﬁ] * ‘PJ-I["‘]

Solution 18.14

a} Difference equation: s[k] = n[k] + 0.9sk — 1}
in the frequency-domain: S(z)

= N(z) +0.927IN(z)
B SO _ 1
NGz} 1-09:-1 z-009
i5
1S L ef
H{eh) = ST09
. 2 2126 0 e[ 1
IJ) @Sﬁ(ej |H(€J )I mz(ej ) | .78Y __nq|2 = |ej!'! _0_9|'2
1UOS T T T T T T T T T I|
T 30-\‘ 4
i
~ ;) L‘l‘
& |\
@ sof |
=z h
20+ \\
o |I‘R“"‘“‘—r—-——-——- e . L L L L
0 0.1 0.2 03 0.4 05 0.6

07 2.8 09 1

Qi ———-

Solution 18.15

a) To determine the Wiener filter we need to know the power density spectrum

yulgw) of the received signal y(t) and the cross-spectrum @, (3w) between
»(t) and the transmitted signal (¢},

The optimal solution fo this exercisc
ia: _ _
gy = B0 Butg)
Dyy(w) '@yy("w‘)

b) Read the linear distortion without nowse = H{jw) Glo)
i ws + b
from the block diagramm: G(s) =b-+a =

&
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. Juw Ju!
{5
() = Ju-a+b jw+llJ0 )
. . 100 10* + w*
Byl) = GG Bl = |20 11| 1 =

(I)SEJ"}(JW = |H(J"‘")|2 |C(f““ |~ ‘I)U"(JW') = @:lf:l:(j""-"}
o= B30 (i = G HGo)

— . 10 — 1
0% 1 12 1 e 1021wt e w21 P e

Before sketching the Bode plots, the zeros and poles of |G(s)|? are deter-
mined: &, = £10? and s, = 0. The zcros have the combined cffect of a
double zero at —10°.

¢} Linear distortion and additive noise

{I),l{Jw)G*{jW)
= H{jw) = :
W) = B CUNE + B (72
* 2 PN
Hiw) = — S &2 4 1007w

G w2 + Ny T 1)

ez (gw) = [®re(gw) - GG + Ny - [Hgw)

4 4 1.2 2104
_ u.-rlo + 9999 w—f—lqu: u.‘flo
10% (W2 + 102 10% (w2 + 1)
&, @) - | Gl |H(o)
108
10%
1 | K b g .q ’ lU i
1072 1 1P 1 @ 021 1P 10t w 107% 1 12 10 e

Solution 18.16

Calculation of $, (nw):

According to (18,22}, & (jw) = €..(jw), since s(¢) and n{t) are uncorrelated.
P, (3w) = $.,(w) - G (yw) = P (3w) - G*(3w), according to (18.G7)
Calcuation of &, (7w):

P (gw) = Buu(gw) 1GNP = {Ran(jw) + @4, () [Glp0)

Wiener filter:
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. (I,S:T.‘(jw) ‘ISU"‘J)(\' JW)
5w =
(J J “py-f:{.}"‘") ((D:m ]w) - ‘I’S*(}'W’ ] |GU‘*’ |2

Jw + 10 )
{ : for jw| < wy

2qw
0 otherwise
Solution 18.17
The nowe-free signal at the outpnt s §(t).
w0y {0 = Elylt + oya®} =B{nlt + O + 3t + D) x(t)} =
= E{n{t+ o)a(t)} + E{glt + r)«(t)} =0 + py,[rj

\f\ﬁth (pu(r) = 8{ ) gilt analog zu {18.77), (18.78}) @y (¢} == k{z) and therefore
By () = By () = H{gw).
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Appendix B.1 Bilateral Laplace Transform Pairs

[ () | x(s)=c{ait)} ROC |
| a(1) 1 s eC ]
1 .
F C(f) ; R.(‘{S} >0
— 1 i . - .
e~ a(t) P Rels} » Re{—a}
L — it k J‘ :
—¢ &(—t} it a H.:_%{S} < Re{—a}
te(t) .~ Re{s} > 0
n!
thz(t) ;{:—1 Re{«} =0
fn‘"_”'t:'(f') A 1 R { " Re!{—
e e (1 Grar ef{s} » Re{—a}
. 1
e s () Graps %—?:1]"’ — Re{s} > Re{—a}
sin{\wut}s(tf] %ﬁ Rl—‘{f‘!’} =0
52 4+ wy
costunt)z(t) :;:—J Refst > 0
4 ul
e~ can{wnt)z(t) @ +—5a-)‘-—’n+ = Re{s} > Re{--a}
S “ '
t‘.‘_”i ﬂill(u}ul’-:]é‘(f] (’3——{%——:? H,F{S} s RE{_{.‘,}
B Sd)y A
. 57— wd
t coswpl)e(t) TEERRe) Re{s} >0
. @i
2(,)06

£ sin(wnt)e(t) — Refst = (
\' bil(w'n Je{#) 1 (42 _,’_wﬂ) Re{s} =0 J
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Appendix B.2 Properties of the Bilateral Laplace

Transform
xtt) X(s) = L4x(t)} ROC

. . ROC )
Linearity . =
4111;1(:8"1:)1—')_ Bt AX,(s) + BXz{s) | ROC{X,}
o - NROCYXo)
D .IC ;
- E;T 7 e 4T X(s) not affected
Modulation (s — a) Refa} shifted by
e (l) oA Re{a} to the right
‘Multiplication by t',
Differentiation in the d .
frequency domain | B E‘ZX (5) not allecled
txlt)
Ditferentiation in the
bime domain ROC o
AN sX(s) ROC{X)
dt
Integrat

ntegration l)L( ) ROC 2 ROC{X}
/ z(Mdz PRl M{s: Re{s} > 0}
g

| Scaling 1 ¥ ( s ) tlijItC sc?led by a |
\ (al) o] a ackor o |

a J
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Appendix B.3 Fourier Transform Pairs

o

x(t) X(gw) = Flx(t)}
éft) 1
1 2rdw)
5(t) Jw
1 t wil
ity u ()
. o 1
={t) mo{w) + —
Jw
rect{at) L 1 ( d )
' la] = \2a
si(at) |.ﬂ.| rect (Zu)
1 .
i —jwsign(w)
. 2
sign(t) —
i
it 2réd{w — wy)
cos{wyt) 76w + wa) + 6w — wp))
sinfwot } 378w + wo) — Hw — wy)]
el @ =0 _2a
O +\.L-'2
e u.zt.z \/ﬂ'(’ fzg
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Appendix B.4 Properties of the Fourier Trans-

form
2(t) Xt = Fla(t)}
]
Lineanty Az (1Y + Ba() AX (w) + BX, (30
Delay xlt — ) eI X )
Modulation et () X{g{w —wu))
‘Multrplication by -
- dX {5
Diflerentiation in the tx(t) ~ {?T:)
frequency domain (g
]?i[ferenl.mi,mu in the 0'-'{'{?‘} S0 X ()
timie domam elt
] R
i X{w) [?rﬂ{w‘) + -—]
Integration f w(oidr 1 J
=% = — X))+ 7X{0)(w)
Jw

. 1 o .
Scalinp x{nt) -la—lX (—-T—) .o € RO}
Convolution () * Tolt) X {gw) - Xoflyw)

Multiplication

Z1(t) - aalf)

1 . .
— Xy () » Xa(pw)

il

N z,(t) z2(ju)

Duality 229t 21 (—w)
x(—t) X{-jw)

Symmetry relations a(t) A (_‘W}
(=8 X7 (jw)

Parseval theorem

f(x |2 (8)]? it

L ] X () P

27 o
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Appendix B.5 Two-sided :-Transform Pairs

x[&] X{z)=Z{x[R]} ROC

i 8[k] 1 zeC
[k] — EER!
B a*e[k) - - - 1= > |a]
_ﬁ_—f_[.*-'t—[—k _ 1] — - 1=l < |a}
kelk) € j1)2 1] > 1
ka®s (k] (»3#&? [z] > |a|

sin{ ke [k] ﬁﬂ_%zul_i EES
cos($2k)e[k] 3% 2] > 1
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Appendix B.6 Properties of the z-Transform

Properly xlk| X(z) ROC
. . _ ROC 2
Lincarity Gy [k]+ bk | aX{z) + bXafz) ROC{ X JAROCI X, }
_ _ ROC{x}, separate
Delay x[k - K] 2TRX(2) consideration of
s=0and » —
M afic ko (k z = [z z ;
odulation atx (k]| X (a) ROC Vlz eROC {x}}
Multiplication ax(z) RO(_:{"E} : scparate
) fozx [K] -z consideration of
by dz =0
Time inversion a[—k] X(z7) ROC={z|z7'eROC{x}}
‘ - c ROC 2
Convolution a1 (k] # x2[R] X1(2) Xafz) ROC{z) JROCs)
Multaplication | k] - wafk] | — ?fxl ©%:(%) ! g | maltiply the
! {7 ¢ fimits of the ROC

L

‘ 2y




Lt
[my)
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Appendix B.7. Discrete-Time Fourier Transform Pairs

Appendix B.7 Discrete-Time Fourier Transform

Pairs
) ] iy ,
o | X(e1%) = Fo{xik]}
3[k) 1
1 i 1y
<[kl —— +§J_LL(E)
0
| —_—
! J'L-(Z?T)
; : L ﬂ{)
ik Y
“ L_( 27 )
1 Q+Q D_0
cos Ok 5 [J_l_L(— - u) -+J_|_L( — 0)}
j Q+0 Q_
sin Qpk % [_IJ_L( '2; U) _ _.J_L( QTFQOJ)]
olk] = 1 for 0<hkaN NS sin{ 284)
0 oiherwise : ¢ sin( ng)




r
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Appendix B.8 Properties of the Discrete-Time
Fourier Transform

Property x[&) X{e#hy = f}{:r‘tk]}\l
Lincarity ax Ik + balk] | X () + bXa(e?)
Delay z[k—x] eI X (M) k€ Z
Modulation 1ok lk] X {8ty ) € R
Convolution z1[k] * aalk] X1(e/%) Xo(e?)
b o o i1
Multiplication &1 [k] xa[k] Q:Xl (Y@ X5 ()
| I| .
o5 1 /r QY2
- X )°d2
Parseval theorein Z |2 [K]| 27 Jfox e
k= =00 one period!
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Index

DT -civeuit. 179

P-cirenit, 397

-laclor. 254

s-planc, 48, 325, 388

z-plane, 319, 325, 388

z-transtorm, 315, 316, 318, 322
convolution theorem, 353
linile sequence. 330
infinite sequence, 33)
inverse, 328
of an exponential sequence, 317
shift theorem, 344
theorems, 326

F transform
convolution property, 308
modulation property, 308
multiphcation theorent, 309
shift properly, 308

ACF, see auto-correlation function,

410
ADC, see unalog-to-digital converter,
261
aliasing, 272
time-cdomain, 286
analog-to-digital converter, 261
analysis
complex, 87
spectral. 219
angular frequency, 298
angular satnpling frequency, 325
aperture
correction filger, 282
function, 281

rectangular, 281
anto-correlation, 228, 424

seqjuences, 431
auto-correlation function, 410, 417,

443

avto-covariance, 420, 425
average

across the process, 405

along the process, 405

linear, 407, 442

quadratic, 407

statistical, 405

time, 405

band-linited

signal, 271
band-pass signals

complex, 275

real, 276
bandwidth, 231
haschand, 271
bageband spectrum, 271
basis funciions, 269
BIBO-stahility, 383
bilinear transform, 392
block diagram, 19, 346
Bode diagram, 241, 333

canonical form, 21

Cauchy integral, 92

causal, 112

causality, 367
characteristic sequence, 316
complex



Index

amplitude, 49, 298
hand-pass signals, 275
exponential tinction, 50
cxponential signal. 46
[raquency. 46
trequency parameter, 48
frequency plane, 110
complex amplitude spectrum, 197
complex analyss. 87
main principle of, 88
complex frequency plane, 48
complex pole pair, 249, 254
conjugate symmetry, 210
continuaity, b
control, 178
controllability, 36
controllable. 36, 37
countrollable system, 35
controller, 396
convergence, b1
convolution, 169, 169, 266, 351
by inspection, 182
cyelic, 268, 309
discrete, 309, 350, 352, 356
periodic, 268
theorem, 170, 171
convolution theorem, 217
correlation function, 417
eorrelation functions, 103
of complex signals, 423
critical sampling, 273
cross-correlation, 227, 421, 423
sequences, 431
crogs-covanance. 423, 425

cross-power density spectrum, 426

crogs-spectrun, 426
crogseorrealtion function, 445
cur-off frequency. 243, 248, 251
cyelic convolulion, 208, 309

damping, 298
deconvolution, 191
delay circwat. 176

delta impulse, 158, 171, 175, 177,
297, 351
caleulation rulesy, 160
derivative, 162
linear combination, 161
derivation, 162, 165
determmism, 5
DIT, see discrete Fourier transtorn,
286
difference equation, 340, 344, 348
analvtical solulion. 341
murerical solution, 341
differential equation, 126
Liomogenous solution, 126
specilic solution, 126
differential equations, 17
ordinary, 18
partial, 18
with constant coefficionts. 18
differentiation theorem. 77. 79, 80
differenttator, 27, 175
cdigital signal, 261, 296
dimensionality, 5
Dirac delta funetion, 138
Dirac impulse, 158
dirvect form 1, 20, 346
direct form I, 20, 346
direct Form III, 24
discrete convolution, 309, 350, 3b2,
356
discrete delay circuit. 344
diserete Fourier transtorm, 286
discrete step hiction, 298
discrete systom, 339
discrele unit impulse, 297, 302
discrete unit step function, 303
discrete-time Fourier transforin, 301
discrete-time signal, 295
digerete-time systemns. 339
distribution. 158
domain. 5
duality, 2156
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elgenfunction, 48, 51-33
cigensequence, 341
energy of a4 time signal, 226
ensemble, 404
ensemble mean, 405
ergodic, 441
joint., 422
weak, 415
ergodic random processes, 414
error power. 453
estimation error. 453
even funclion, 209
even sequence, 310
expected value, 5, 403, 405
second-order joint, 421
expected values
first-order, 407
second-ordor, 413
exponential funcuon, 52
exponential order, 72
exponential sequence, 317, 319
unilateral, 304
exponential sequences, 298
undamped. complex, 302
external part, 128, 144, 341

V. transform, 301. 322
I, transforminverse, 301
feedback, 398
filter
auto-correlation function, 444
matched, 188
oplimal, 153
Wicner, 191, 452, 453
filter ACF. 444
FIR-system. 356
Fourier
cocfficients, 266
Fourier series, G1, 261
Fourier spectrum, 197
Foutier transform, 61, 196. 197. 200,
241, 322
couvolution, 217

differentation theorem, 224
discrete, 286
discrete-time, 301
duality. 215, 269
integration theorem, 224
mverse, 213
inverse discrote-time, 301
linearity, 215
modulation. 221
multiplication, 219
of a sequence, 301, 322
pairs, 200
periadic signals, 2G4
shift, 221
similanty, 217
frequency
resonant., 254
frequency parameter. compicx. 48
frequency resolution, 309
frequency response. 241, 333
smaothing, 396
frequency, complex, 46
frequency-domain, 45, 285
funetion
analytic, 69, 8%
complex differentiable, 69
even, 209
heloworphic, G4
odd, 209
regular, 69

Gausy impulse, 234

Hilkbert transform. 372
Hurwitz
deterininants, 392
pulynomial. 392

Tvirenit, 179

ITR-syslem, 356

mmpedance, 53

inpulse response. 160, 167, 174,
350, 351, 369
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hnpulse tramn, 177, 261
indefinite integral. 68
ilial gondition, 18
natural, 129
initial condition problem, 19, 125,
341, 348
classical solution, 126
firsi-order. 135
with sipusoidal signal, 132
initial state, 129, 142
initial value, 129, 142
mntegrable, 384
mtegration theorem, 77, 79
mtegrator, 28, 174
internal part, 128, 144, 341
interpolation fileer, 271
intial state, 143
mverswon, 395

Laplace integral, 64
Laplace Transform
inverse bilateral, 97
Laplace transform, 81, 62, 64-66, 70.
72, 195, 198, 322, 324
bilateral, 61, 79
differentiation theovem, 77, 175
exislence of, 72
integration theorem, 77, 175
inverse, 62, 73, 87, 98
inverse unilateral, 96
inverse with complcting the
sguare, 102
medulation Lheorein, 76
practical calculation of the in-
verse, 101
properties, 75
shitt theorcm, 76, 177
unilateral, 61, 63, 79
Laurenl expansion, 69
line spectrum, 264, 266
linearity, 7
fow-pass filter
ideal, 356

ETL-system, 10, 50, 369
causal stable, 388
combination, 115
discrete, 340
feedback, 117
parallel coupling, 116
series coupling, 115

LTI-systems
combination, 179

magnitude {requency response, 242
maguitude spectrum, 197
matched flter, 188
maktrix

Frobenins, 33

modal, 34

system, 33

transformation, 33
mean, b
mean sguare, 127, 445
Icasuremoent

of the iinpulse respouse, 451

of the transfer function, 451
modal matrix, 34
maodulation, 222
modulation theorem, 76, 221, 327
mnltiplication property, 219
multiplication theorem, 327

igise power, 404
normalisation. 54
Nyquist frequency, 273

observability, 36
observable, 36
completely, 37
observable system, 35
observation
window of, 220
odd function, 209
odd sequence, 310
operational amplifier, 28
optimal filter, 453
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order of a system, 111
output equation, 31
oversampling, 273

P-circuit, 179
parallel form, 34
Parseval relationship, 310
Parseval's theorem, 225, 235
partial [raction expansion, 98
for multiple poles. 103
path
direct, 31
periodic convolution, 265
penodic signal, 261, 264
phase, 197
phase spectrum, 197
PI-circuit, 179
pole, 64, 67, 69, 110
pole pair, complex, 249, 254
pole-zere diagram, 110, 241, 332, 333
power, 407, 415
power density spectrun, 447
PTy-circuit, 179

quantisation, 296
amplitude, 261
Lire, 261

random process, 104
random sequences, 431
randatmn signal
addition, 438
multiplication with a factor, 437
real band-pass signal. 276
realisation, 404
reconstruction, 282
of a signal, 152
rectangle function, 201, 202, 204
rectangle impulse, 155, 202
region of convergence, 62, 61 66, 70,
112, 170, 315, 353, 388
of the z-transform, 320
residue theorem, 91

resonance curve, 254
resonant frequency, 254
rms. 445

ROC, 62

roct locus, 397

gample function, 404
sample-and-hold, 232
sampling, 261, 269, 295, 376
critical, 273, 376
frequency-domain, 285
ideal, 269
real world, 279
sampling frequency, 269
sampling rate, 272
sampling theorem, 270, 325
sclective property, 159, 297
sequence
even, 310
add, 310
sha-gymbol, 262
shift theorem, 76, 221, 327
si-function, 203
signal, 1
amplitude, 1
aimplitude-continuous, 5
amplitnde-discrete, b
analogue, 5
analytical, 376
band-limnited, 271
causal, 370
complex hand-pass, 273
cohtiutous, 1, 4
continuous-tiume, 1
deterministic, 4, 5, 403
digital, 5, 261, 266
discontinuous, 5
discrete, 2
discrete-time, 2, 295
tmultidinensional, 4, 3
one-dimensional, 4. 5
periodic, 261, 264
piecewise continuous, 80
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real band-pass, 276
reconstruction of, 452
stochastic, 4, 404
simnilarity theorem, 217, 327
singulanity, 69, 89, 90
essential, 69
spectral analysis, 219
speclrun, 2190, 220, 371
haseband. 271
complex amplitude, 197
Fourier, 197
wagnitude, 197
of a sequence. 301
one-sided, 371
phase, 197
power deusity, 447
stabilising. 396
stability, 367, 383
BIBO-, 383
continuoeus systems, 389
discrete syslems, 390, 393
Hurwitz criteria, 391
stability criteria . 385
state, 29
-matrix, 33
-variable, 29
equation, 31
state-space
description, 142
differential equation, 138
representation, 347
stationary, 412, 141
joint, 422
weak, 413
statistical average, 405

step function, 63, 64, 65, 164, 174

derivation, 163
step response, 108, 171

suiparpostiion priuciple, 8, 308, 339

synuoetry

conjugate, 210
systom, &

cavsal. 13, 112, 367

classification, 13
discrete, 339
discrete-time, 339
equivalent, 37
FIR-, 356
funciion, 50
TIR-, 356
inversion, 395
linear, 7, 3390
matrix, 31, 34
memory, 13
memoryless, 13
niinimal phase, 395
non-recursive, 356
nonlinear, 7
recursive, 356
response, b3
shift-invayiant, 340
stabilising, 396
time mvanant, 9. 12
time varant, 12
tire-invariant, 7, 340
translation-invariant, 13
system analysis, 107
system function, 105, 107, 169, 343
rational fraction, 110
systen identification, 107
system matrix, 33
system state, 125

time average, 405
time invariance, 7, 9
thie reversal, 327
time serics, 205
tine-average, 431
gecond-order joint, 422
time-bandwudth product, 231, 233
time-domain aliasing. 286
tolerance schome. 233
transfer funciion. 50. 105, 313
uverse. 118
transtorm
-, 315
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- F. . 301

bilinear, 392

Fonrer. G1, 196

Hilbert. 372

Laplace, 61, 62, 195
transform pairs

of the Laplace transform, 83
i.ransfornation

Lo parallel form, 36
transformation matrie, 33, 139

uncertamnty relation, 236

uncorrelated. 418

undersampling, 273

uniqueness, 73

unit. circle, 388

unit impulse, 158, 297
diserete, 302

variable
continuous, 2
dependent, 1
independent., 1

Aarance, b, 407

white noise. 429
baud-linmted, 430
Wicner filter, 191, 452, 453
window of observalion, 220

zeron, 110
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